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Analysis of an ARC-class device predicts a plasma with very similar
core transport physics as analogous SPARC and ITER scenarios

tokamak intended to retire physics risks for ARC

e In support of this mission, a INFUSE-funded
collaboration was initiated to

o Characterize core transport and turbulence
physics in the ARC V1C scenario, and

o Assess to what extent this physics will be
analogous to expectations for SPARC

o Inform ARC design refinements and
SPARC operational planning
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Talk Outline- address three questions

1. Why did we pursue this specific project?
2. What did we do?

3. What did we learn?
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Nominal ARC V1C [1] scenario: P, . =500 MW via
pulsed operation ina R, =3.65m, B, = 11.6 T tokamak

SPARC

[1] A. Creely, 2021 APS-DPP
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SPARC Range ARC,,,
Ptusion 0-141 501 |MW
Q 0-11 50
<T> 5-13 9.7 keV
<n > 1.4-55 1.8 102°m-3
Hgs,\2 1.0 1.0
f, 0.17-0.65 0.6
B 0.8-1.5 il. 72 m-T/MA
p' 0.0013 - 0.0040 |0.0018
P.e,Bo/Ro 125-184 263 MW-T/m
PyepBo/RoNe 50 |41 -109 79.4 |MW-Tmd

R (m)
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Initial 0-D parameters for the ARC V1C scenario
determined via POPCON analysis

o (T.) =968 [keV]
(ne) = 18.21 [101° m~3]

Pfusion = 500.9 MW
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SPARC Range ARC,,,
Ptusion 0-141 501 |MW
Q 0-11 50
<T> 5-13 9.7 kev
<n> 1.4-55 1.8 102°m3
3 PYYP 1.0 1.0
f, 0.17-0.65 0.6
By 0.8-1.5 il m-T/MA
p 0.0013 - 0.0040 | 0.0018
P.epBo/Ro 125 - 184 263 |MW-T/m
PeepBo/RoN, 20> | 41-109 79.4 |MW-T:m®

Holland/INFUSE/2.27.24




Initial 0-D parameters for the ARC V1C scenario
determined via POPCON analysis

ITER 1998 H-mode scallng T

H

98,y2

SPARC Range ARC,,,
[ e 0-141 501 |MW
3 Q 0-11 50
g (Te) = 9.68 [keV] <T> 5-13 9.7 |keV
Lo 2482411019 2—3]
<n_> rrr—18 | 10°m®
Key assumption: t_ will follow
Hga'vz 1.0 1-0
98,y2 f, 0.6
TE/ Tog Y2 it 0.8-1.5 il.7) m-T/MA
p* 0.0013 - 0.0040 | 0.0018
PepBo/Ro 125 - 184 263 |MW-T/m
! PeepBo/RoNe 20> | 41 - 109 79.4 |MW-Tm?
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Why this project? To have more confidence in
expected performance than scaling laws can provide
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Why this project? To have more confidence in
expected performance than scaling laws can provide

e Well-known that increasing energy
confinement time 1_ improves
power plant efficiency and

attractiveness
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Different transport models predict a factor of 2

lation in SPARC Q but fH
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Why this problem? Because it was a great fit for
INFUSE structure

e Clear questions of direct relevance to CFS mission
o  Will SPARC provide a good proxy for ARC core physics? Why or why not?

e The questions could be answered in a timely fashion

o New surrogate-model based workflow enables us to make high-fidelity predictions
with 10x fewer simulations than before

e Urgency of project matches well with INFUSE timescales
o Don’t need ASAP, but also don’t want to wait too long

e Good match of expertise, interests, and availability of personnel
o Need all three to be successful

e Addresses non-proprietary publishable research
o Can (and have) openly share the work
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Talk Outline- address three questions

2. What did we do?
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Starting from the POPCON parameters, the OMFIT STEP [1] tool
was used to develop self-consistent 1.5D transport solutions

EqUIIibrlum / [1] B. C. Lyons et al, Phys. Plasmas 30
CHEF \ 092510 (2023)
+ H&CD [(H &CD, current ]\ Sgg:?ﬂetshir:ﬁﬁﬂ)ces for other codes
EPED diffusion) .
[(pedestal) S » Solution
(fixed bdry.
\_ G-S solver) )/
~  TGYRO
| NEO | [ TGLF | 9o
Transport Use TGLF SAT2 EM @@

\_ (core transport) /(default resolution and setting)

UC S D, https://omfit.io/modules/mod_STEP.html
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Typical ARC V1C solution predicted by reduced models:
modest n_ peaking, T_ > T. ion power flow P. > P_

N density (102%/m3) 20 temperature (keV)
, 24 T, T, .
18} .
2
12arcvic 7
1 _;f,lfff RA\E\IM Paux: 25MW _
0 : L ! 1
5 60 power flows (MW)
4 45
3
30
2
1L 15
8.0 I 0.|4 016 018 1.0 8.0 0.2 0.4 0.6 0.8 1.0

0.2
UCSan Dleg(_) Pror Holland/INFUSE/2.27 .24 Ptor




Results close to POPCON predictions but about 20%

lower P than targeted (even with H =1.0)
fusion 98,y2
N density (102%/m?) 20 temperature (keV)
3 24 T, T,
18| -
2
12-Arc vic 7
1 _;f,lfff RA\E\IM Paux: 25MW
o N T
fus ~— : 98y2 ~ "
5 60 P°b‘f{' f =04 B =14
4 ask P P
3 30l P .. =411 MW
2 15l P =64 MW
B P.. /P, = 0.8
8.0 0|.2 0.8 1.0 8.0 0.2 U.5 0.8 T.0
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ARC V1C, SPARC, and ITER predicted to have very
similar profile shapes with this workflow

T; [keV] _ TelkeVl ne [10'9/m3]

— ARCVI1C
32 — SPARC SPARC
— ITER

40 ,

ARC V1C
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ARC V1C, SPARC, and ITER predicted to have very
similar profile shapes with this workflow

5 Ti/Tip=09 5 Te/Te pi=09 - Ne/Ne p. =09

— ARCV1C
— SPARC | 4
— ITER

| SPARC  ARc ViC

8.0 0.2 0.4 0.6 0.8 1.0 8.0 0.2 0.4 0.6 0.8 1.0 0'8.0 0.2 0.4 0.6 0.8 1.0
Ptor Ptor Ptor
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ARC V1C, SPARC, and ITER predicted to have very

similar profile shapes with this workflow

s Tiip.=09

— ARCV1C
— SPARC
— ITER

ptor

. Te/-ll-e. Pior = 0.9 .

= 4

| Note ITER scenario [1] has core beam
& pellet fueling, SPARC & ARC do not
[1] P. Mantica et al., PPCF 2019

| ne/rl\e. Pior=0.9

ITER

o SPARC  aApcvic

ptor
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Reduced model-based predictions of density peaking in
SPARC and ARC V1C both below Angioni 2007 scaling

e Plot adapted from
P. Rodriguez-Fernandez et al,
Nucl. Fusion 62 0760306 (2022)

e Peaking data and analysis from
o C. Angioni et al,
Phys. Plasmas 14 055905 (2007)
o M. Greenwald et al,
Nucl. Fusion 47 L26 (20007)
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But high-fidelity modeling of SPARC predicts peaking

in line with scaling- what about ARC?

e Plot adapted from
P. Rodriguez-Fernandez et al,
Nucl. Fusion 62 0760306 (2022)

e Peaking data and analysis from
o C. Angioni et al,
Phys. Plasmas 14 055905 (2007)
o M. Greenwald et al,
Nucl. Fusion 47 L26 (20007)
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Surprise- unlike SPARC, high-fidelity modeling did
not predict an increase in n, peaking for ARC V1C

2.0 : SPARIC ne/nle(o-g) | | ARCI ne/ne(|0.9)
SPARC TGLF ARC TGLF
Le — SPARCCGYRO | | — ARC CGYRO |
SPARC: PORTALS
12p +CGYRO| [ :
0.8} | ARC V1C: PORTALS+CGYRO
0.4} N
0'8.0 OI.Z 0!4 0!6 018 1.0 0.0 OI.2 0:4 016 018 1.0

Ptor

TGYRO + TGLF SAT2: reduced modsf workflow
. PORTALS + CGYRO: high fidelity model workflow
UCSan Diego J y
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Using a more diffused current profile for ARC leads

to increased peaking at mid-radius, closer profiles

e Difference in g profiles from different descriptions of sawtooth-driven
current evolution; can also be seen as different times in sawtooth cycle

2.0 | Ne/ne(0.9) | s __safety factorg
=  SPARC CGYRO
1.6 = ARC CGYRO

* ARC CGYRO-SPARC q 4r-

-----
---------
Bl
L]
L]
-
-
-
o

1.2 4 3F

-
o
[
i)

0.8 ARC V1C with SPARC q
ARC ViC

0.4

080 0.2 0.4 0.6 0.8 1.0 8.0 0.2 0.4 0.6 0.8 1.0
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Source of remaining differences in deep core still

under investigation

e Perhaps differences in collisionality, 3, inclusion of 6B” fluctuations,

or just uncertainties in representing near-marginal turbulence?
2.0 | Ne/ne(0.9) | s safety factor g

- SPARC CGYRO
== ARC CGYRO
* ARC CGYRO-SPARC q 4r-

1.6

-----
.........
»
-
L]
-
-
L ]
L ]

1.2 4 3k

-
o
[
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0.8 ARC V1C with SPARC q
ARC ViC

0.4
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Talk Outline- address three questions

3. What did we learn?
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Key result of modeling: although all three plasmas (ARC, SPARC,
ITER) have dominant electron heating, strong radiation and collisional
coupling make ion thermal transport the dominant energy loss channel

3 api,e 8Qi,e aur o 3
s o }S + S| Srai & Gveacane(Te = To)
Si/(Si+Se) Qi/(Qi +Qe)

1.0 :

0.5F-

0'8 0 0.2 0.4

UCSan Diego

Holland/INFUSE/2.27.24



Required dominance of ion transport for tokamak
power plants can be understood via a simple model [1]

T a-heating of e- drives T?O > Tio_, separatrix |
el leads to exchange heating of ions by e-

radius

, [1] C. Holland et al, J. Plasma Phys 89 05890418 (2023)
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Required dominance of ion transport for tokamak
power plants can be understood via a simple model [1]

T a-heating of e- drives T?O > Tio_, separatrix |
el leads to exchange heating of ions by e-

Power plant requires Q, _ >> 1

radius

. [1] C. Holland et al, J. Plasma Phys 89 05890418 (2023)
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Required dominance of ion transport for tokamak
power plants can be understood via a simple model [1]

T a-heating of e- drives T?O > Tio_, separatrix |
el leads to exchange heating of ions by e-

Power plant requires Q, _ >> 1
Q, . >> 1requires P, >>P_,

fus X

radius

, [1] C. Holland et al, J. Plasma Phys 89 05890418 (2023)
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Required dominance of ion transport for tokamak
power plants can be understood via a simple model [1]

T a-heating of e- drives T?O > Tio_, separatrix |
el leads to exchange heating of ions by e-

Power plant requires Q, _ >> 1
Q. >>1requires P, >>P_

Efficiently keeping T. high enough to
sustain Q, _ >> 1 requires P. ~ P

P

~
exch a

radius
. [1] C. Holland et al, J. Plasma Phys 89 05890418 (2023)
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Required dominance of ion transport for tokamak
power plants can be understood via a simple model [1]

T a-heating of e- drives T?O > Tio_, separatrix |
el leads to exchange heating of ions by e-

Transport moves central a-heating
energy out to edge primarily
through ion heat flux

radius

, [1] C. Holland et al, J. Plasma Phys 89 05890418 (2023)
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Required dominance of ion transport for tokamak
power plants can be understood via a simple model [1]

T a-heating of e- drives T?O > Tio_, separatrix |
el leads to exchange heating of ions by e- I

Radiation and q rapidly cool edge e-,
eads to exchange heating of e- by ions

E—

Transport moves central a-heating
energy out to edge primarily
through ion heat flux

radius
. [1] C. Holland et al, J. Plasma Phys 89 05890418 (2023)
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Viable power plant must have significant turbulent core
ion heat flux; “fingerprint” paradigm [1] requires ITG/TEM

° ical:
NQOCIa§S|caI too SmaIJ (A)  [1] M. Kotschenreuther et al, Nucl. Fusion 59 096001 2019
o Required by power plant v. Mudesiype il D/ D fv.

o MTM, ETG: _like ] 23 213

J I'M ~17T0 ~171T0 ST
®
can be present, but can’t E‘TG ~1/10 ~1/20 ~1/20

provide needed y./x, B)
e KBM/MHD-like modes:; Modetype  yi/xe De/(xi + Xe) D7/(xi + Xe)

. . ITG/TEM 1-4 —1/10 £ 1/3 =]
only drive particle outflow,l-—l

power plants likely require core thermal particle pinch
o Also want to avoid EP-driven modes: alpha redistribution, wall damage

e Leaves ITG (+TEM) as only viable process
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What did we learn?

e Good stuff: higher-fidelity models supported the POPCON
analysis to within 20-30%

e Not-so-good stuff. performance lower than expected from
POPCON analysis, in particular below L-H threshold

e Interesting stuff: less density peaking predicted in ARC than
SPARC, still working to understand why

e Most important stuff: core transport and turbulence

characteristics should be same in ARC, SPARC, and ITER
o SPARC can serve as a good proxy for ARC and ITER core
confinement

UCSan Dleg(_) Holland/INFUSE/2.27.24
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Disclaimer

“This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect those
of the United States Government or any agency thereof.”
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