

High Heat Flux Exposures of Tungsten and Novel Tungsten Alloys for Plasma Facing Components

TK Gray, PE Albert¹, Z Koyn², AQ Kuang³, RL Romesberg¹ M Singh², D Yuryev³

ORNL is managed by UT-Battelle LLC for the US Department of Energy

This work was funded under the INFUSE program – a DOE SC FES private–public partnership - under CRADA No. NFE-20-8060 between Oak Ridge National Laboratory and Commonwealth Fusion Systems and CRADA No NFE-22-0935 between ORNL and Energy Driven Technologies.

Outline

- Intro to high heat flux (HHF) and experimental setup at Applied Research Lab (ARL) @ Penn State University
- Thermal Shock Testing: W and W Heavy Alloy (WHA)
 - Completed INFUSE project
- Thermal Shock Testing: W and dispersion strengthened W alloy

 Ongoing INFUSE project
- Conclusions

Why Tungsten for Fusion Plasma Facing Components (PFCs)?

Pros

- Highest melting point of pure metals
- Low Sputtering yield
- Low Tritium retention

Cons

- Core plasma contamination leads to radiative collapse
 - -Core W concentrations of $10^{-4} 10^{-5}$
 - -Cracking and UFO's
 - -Melting and droplet ejection
- Brittle material at room temperature

 Difficult to machine
- Grain growth and morphology changes under heat and particle loads
 - -Blistering, He bubbles, W fuzz

Y Uedo, Fus. Eng. Des. 89(7-8) (2014) 901-906

Why Tungsten for Fusion Plasma Facing Components (PFCs)?

Pros	Cons
 Highest melting point of pure metals 	 Core plasma contamination leads to radiative collapse
Low Sputtering vield	– Core W concentrations of 10 ⁻⁴ – 10 ⁻⁵
• Low Tritiu Need for new W materials and manufacturing technologies	
	phology changes onder near and particle loads – Blistering, He bubbles, W fuzz

Y Uedo, Fus. Eng. Des. 89(7-8) (2014) 901-906

Electron Beam HHF testing facility

Extreme Environment Electron Beam High Heat Flux Testing and Evaluation Capabilities – Ryan L. Romesberg, Penn State ARL

ARL Electron Beam Facility

- ARL Electron Beam:
 - 2 A, 17 kV electron beam
 - Focus from 1 10 mm FWHM
 - Target peak heat fluxes: 100-500 MW/m²
 - Target heat flux factors: 40-100 MW \cdot s^{0.5}/m²
 - High end limit for ELMs, lower limits for disruptions
- Diagnostics:
 - FLIR SC4000 IR camera (30-400 Hz)
 - Video camera (60 Hz)
 - TC's and RTD's on rear of test articles

E-beam mimicking strike point sweep

2500

W & W Heavy Alloy Thermal Shock Testing

Tungsten Heavy Alloy (WHA) for fusion applications

- Sintered W powder with Fe and Ni binder
 - Not an alloy but a mixed metal composite
 - ASTM B777 Class 4 97% W, 2% Ni, 1% Fe
 - XRF measurements across multiple surfaces saw W fractions of 95-98%, Ni/Fe ratios of 1.1-1.9
- WHA Tiles tested for AUG [1-4]
 - Cyclic testing at GLADIS up to 20 MW/m²
 - Installed in the divertor for 2017 AUG campaign
- Advantages of being ductile at room temperature
 - Improved machineability
 - Cheaper than pure W
 - Crack resistant for low temperature disruptions and optical hot spots [5]

[1] Neu R., et al., *Fusion Engineering and Design* 124 (2017): 450-454.
[2] Neu R., et al., *Journal of Nuclear Materials* 511 (2018): 567-573.
[3] Maier H., et al., *Nuclear Materials and Energy* 18 (2019): 245-249.
[4] Maier H., et al., *Nuclear Fusion* 60.12 (2020): 126044.
[5] Diez M., et al., *Nuclear Fusion* 60.5 (2020): 054001 de master to edit

Desire to test to failure at SPARC relevant conditions

- Side-by-side comparison of WHA (Elmet ET97) and pure W tiles (hot rolled)
- W and WHA test articles are unconstrained
 - Only stresses are generated by thermal gradient

Open slide master to edit

Flash heating of surface shows similar melt behavior

- Estimated peak heat flux of ~500 MW/m² and a beam velocity of 120 mm/s with a FWHM of ~3 mm.
- Suggest that flash melting due to disruptions should not result in any adverse difference in the behavior between the two materials.
- Consistent with previous work using plasma shock exposures*

*Laas T., et al., Fusion Engineering and Design 151 (2020): 111408.

Slower beam with a lower average heat flux

- Same beam shape but slower sweep speed and reduced l_{beam}
 - 48 mm/s in the x-direction.
- Average peak of ~100 MW/m²

Open slide master to edit

Slower beam with a lower average heat flux

- Same beam shape but slower sweep speed and reduced l_{beam}
 - 48 mm/s in the x-direction.
- Average peak of ~100 MW/m²
- First pass:
 - No surface melting of the W.
 - Surface roughing of the WHA

Slower beam with a lower average heat flux

- Same beam shape but slower sweep speed and reduced l_{beam}
 - 48 mm/s in the x-direction.
- Average peak of ~100 MW/m²
- First pass:
 - No surface melting of the W.
 - Surface roughing of the WHA
- Second pass:
 - Surface temperatures exceed tungsten melt temperatures.

Failure mechanism of the W and WHA differ

500x

1000x

- Some signs of increased Fe/Ni but within the range of the pre-test.
- Etched surface exposing W particles.
- 'Craters' left from the ejection of W grains
- Similar to overloaded case by Neu et al. [Neu, et al., JNM **511** (2018) 567-573]

Failure mechanism of the W and WHA materials differ

500x 1000x
 Surface melt regions are saturated with tungsten.

250x

Open slide master to edit

16

Impact on SPARC PFC material choices

- Enhanced failure mechanism for WHA has been identified relative to pure W, occurs at temperatures higher than tungsten recrystallization but lower than tungsten melt.
- As a result the decision was made for SPARC PFCs to keep high heat flux regions as pure W - outer limiters and the divertor target tiles
- WHA is will be used in low heat flux regions of the device as a plasma facing component accounting for ~75% of the in-vessel coverage.
 - This simplifies design resulting in more complex shapes and larger components
 - Reduces procurement and manufacturing cost

W & dispersion strengthened W Alloy Thermal Shock Testing

Materials Synthesis, Scalable Manufacturing, Extreme Environment Testing, and Performance Evaluation Capabilities , Christopher DeSalle - Penn State ARL

Mechanical Characterization of PFC Candidate Fine-Grain Dispersion-Strengthened Tungsten Materials, Zak Koyn - Edditek

Grain-Refined Refractory Alloy Components

- Additive Manufacturing (AM) of refractory alloys produces components with large grains
 - Reducing mechanical properties
 - resistance to thermal shock
 - cracking during processing
- Goal is to reduce average grain size of refractory alloys using grain refiners
 - ceramic particles imbedded within the tungsten matrix

CAK RIDGE

Open slide master to e

Field-Assisted Sintering Technology (FAST) Process

- Direct Joule heating (DC) of material during sintering
 - Allows high heating rates and low process time
 - Lower sintering temperature than conventional methods
 - ROI in cost and energy
 - Accelerated processing cycle times
- Allows for multi-material and compositionally graded structures
- Joining of dissimilar materials (metal and ceramics)

Ability to process:

- Polymers
- Metals (Al, Cu, Ti, Ni, Ta, W) and composites/alloys
- Ceramics (carbides, nitrides, oxides)

FAST W Samples produced for HHF Testing

- Produce pure W and W + ZrC samples using 25 Ton FAST system
 - Samples were EDM from graphite dye
 - 18mm x 18 mm x 10mm samples cut (EDM) from larger material
 - Also removes outer carbide layer

R&D FAST Unit. Max load: **25 Ton;** Maximum diameter = **80 mm**

80mm x 80mm

PennState Applied Research Laboratory 18mm x 18mm x 10 mm

Open slide master to edit

Initial results

- Successfully demonstrated grain refiners in reducing the average grain size of sintered tungsten components
- This has resulting in improved thermomechanical properties
- Initial HHF Exposures conducted last week
 - ITER-grade W, pure FAST W and FAST W + ZrC
 - More testing soon!

Joining of 2, 10mm thick plates together

Joining bondline between tungsten slabs not readily observed post metallography

Summary

- HHF testing of materials is vital for developing reactor-relevant PFCs
- Electron beam based HHF tests are a cost effective and timely method of material testing
 - Relative to testing in confinement devices
- Had a direct impact on PFC material choices for SPARC
- Using HHF to test novel W materials and manufacturing techniques

Go see the posters!

 Materials Synthesis, Scalable Manufacturing, Extreme Environment Testing, and Performance Evaluation Capabilities, Christopher DeSalle - Penn State ARL

• Extreme Environment Electron Beam High Heat Flux Testing and Evaluation Capabilities – Ryan L. Romesberg, Penn State ARL

Mechanical Characterization of PFC Candidate Fine-Grain
 Dispersion-Strengthened Tungsten Materials, Zak Koyn - Edditek

