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XGC-ST40 INFUSE Collaboration Status 1

Approved in FY2021
CRADA signed in FY2022

Simulation of a lower current (0.5MA) ST40 discharge was performed in FY2022

 After several trials, it was concluded that the plasma profile was too far from
gyrokinetic equilibrium: below the turbulence criticality; 1, not enhanced

Tokamak Energy decided to identify a higher current, better diagnosed discharge
 Anew 1 MA plasma profile (#5T10014) was given to PPPL in CY2023

» Multiscale electrostatic simulation was performed with a fruitful result
» Result reported here

* Neoclassical, electrostatic turbulence, neutral particle recycle in realistic diverted geometry

#ST10014 discharge, however, still did not have an experimental measurement of
divertor heat-load footprint



XGC-ST40 INFUSE Collaboration Status 2

= At 2023 IAEA-FEC London, Tokamak Energy and XGC teams had a meeting

« Tokamak Energy can now measure divertor heat-load footprint

« XGC team may not want to proceed with EM simulation of #5T10014 since this shot does not
have experimental measurement of heat-load footprint

« Tokamak Energy will give the XGC team, by Dec. 2023, a new plasma discharge input that has
experimental measurement of divertor heat-load footprint

« ST40 sees a highly peaked electron heat-load right on the outer divertor leg cross-section
for an unknown reason: XGC also sees this.

« Thus, cannot use Eich’s fitting formula
« PPPL will wait for the new discharge input parameters
« perform EM simulation for validation and physics understanding
« CRADA no-cost extension (till April 26, 2024) has been submitted to DOE, accordingly

= A computing time proposal has been submitted to ORNL/OLCF specifically for
XGC's public-private collaboration simulation



The edge-optimized gyrokinetic code XGC
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Whole volume w/o artificial inner bd
Logical sheath outer boundary

Non-Maxwellian particles with nonlinear
Fokker-Planck collision operator

Neoclassical particle dynamics
with X-point orbit loss

MC neutral particle recycling and

atomic physics dynamics
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A typical edge electrostatic turbulence in a
tokamak plasma simulated by XGC.
Sheared streamer and blobby turbulence
structures around the magnetic separatrix

surface can be seen. [Visualization is by D.
Pugmire of ORNL]



Smaller divertor surface area in a ST reactors raises deeper concern regarding the divertor heat
exhaust density

How will the baseline divertor heat-load width in a high-current ST plasma compare against Eich’s
data regression values?
* Interms of 4,, which is the heat-load width measured on outer divertor plates mapped to outer midplane
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Electrostatic XGC prediction agreed with 1,data from all
the existing tokamaks or Eich regression values 4,

Also agreed with A,%<" on 5MA Pre-Fusion ITER
The same code, however, predicted ~12X wider A,for
FPO 15MAITER /C.S. Chang, NF 2017]

XGC'’s results for IMANSTX and 1.5MA NSTX-U agreed
with Eich’s regression values

XGC then produced ~2X wider 4,for 2.0MA NSTX-U
- A hint that a higher—B ST could yield wider 4,




Science [C.S. Chang, PoP 2021]

It is found that streamers from dissipative trapped-electron modes spread the heat-load footprint

- ITER: DTEMSs are unsuppressed due to lack of ExB shearing rate from extremely small p; p/a
« NSTX-U: Strong DTEMs are driven by large trapped population and strong toroidicity
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ST40 can provide validated data to rase the
accuracy of the surrogate model. EM effect?



A‘ZI(GC on ST40 (#ST10014)

AXGC for 1MA ST40 #10014 is found to be ~2.5X wider than A¢' "%
Consistently with findings from 15MA ITER and 2MA NSTX-U, DTEMs become dominant at edge
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Plans for the remainder of current INFUSE cycle (till 4/2024)

= Upgrade the XGC simulation to Turbulent homoclinic tangle in 15MA ITER edge, making
electromagnetic stochastic connection between pedestal and divertor
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=  Study how the electromagnetic effect will
modify the exhaust heat-load footprint

* e.g., Turbulent homoclinic tangle effect
« Compare against experiment
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» Provide physics understanding
* e.g., Strong electron heat-exhaust along
the outer divertor?
«  Why ST sees wider A7°“ more easily
than a conventional tokamak does?
« The only place we saw the 4,
enhancement on conventional tokamaks

was in a turbulence dominant QH mode
w/o EHO

= Write a joint paper including a validate
surrogate model 4, for STs

Number of points per pixel




2nd INFUSE phase?

Raise the accuracy of the simple surrogate
formula for AD" ¢4t
« That can be utilized for ST40 upgrades
and reactor designs
* By studying more ST40 discharges and

and validating the simulation results
Will ST follow the same A, path as
conventional high-B tokamaks?

How will impurity particles, gas injection and
shaping change heat exhaust and 4, in ST?

« Part of validation process

« Use XGC-DEGAS2 for a more accurate
atomic physics validation
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