Progress towards advanced modeling tools to explore HTS CORC[®] wire performance and guide its further optimization

Danko van der Laan and Jeremy Weiss

Advanced Conductor Technologies & University of Colorado, Boulder, Colorado, USA

Sven Doenges and Kyle Radcliff

Advanced Conductor Technologies, Boulder, Colorado, USA

Christian Messe, Lukas Brouwer, Diego Arbelaez and Soren Prestemon

Lawrence Berkeley National Laboratory, Berkeley, California, USA

Drew Hazelton and Yifei Zhang SuperPower Inc, Glenville, New York, USA

Advanced Conductor Technologies www.advancedconductor.com

INFUSE. December 16th. 2021

.....

CORC[®] Cables and Wires Pioneered by Advanced Conductor Technologies

CORC® cable principle based on strain management

Winding many high-temperature superconducting REBCO coated conductors from SuperPower in a helical fashion with the REBCO under compression around a small former to obtain high cable currents

CORC® wires (2.5 – 4.5 mm diameter)

- Current in the order of 5,000 A (4.2 K, 20 T)
- Flexible with bending down to < 50 mm diameter

CORC® cable (5 – 8 mm diameter)

- Current in the order of 10,000 A (4.2 K, 20 T)
- Flexible with bending down to > 100 mm diameter

CORC®-Cable In Conduit Conductor (CICC)

- Performance as high as 100,000 A (4.2 K, 20 T)
- Bending diameter about 1 meter

CORC[®] Cable Development for High-Field Magnets

Canted-cosine-theta (CCT) accelerator magnets (with LBNL)

- Ultimately reach 20 T dipole field in LTS/HTS hybrid
- Recently achieved 2.9 T in a stand-alone CORC®-CCT

High-field CORC® solenoids

- CORC[®] insert solenoid operated within a 14 T LTS solenoid
- Reached a peak field of 16.77 T at a current of 4,400 A
- Peak unsupported hoop stress of 275 MPa

Advanced Conductor Technologies www.advancedconductor.com

CORC® Cable Development for Compact Fusion Magnets

Ohmic Heating (OH) coils

- CORC[®] cables allow high winding current density OH coils ($J_w > 150 \text{ A/mm}^2$)
- Allowing the OH coil to be placed outside the TF coils, between the inner legs
- High current (I_{opp} > 10 kA) windings allow for high field sweep rates to provide the required flux swing

NSTX-Upgrade

Sustained high power density (SHPD) tokamak A=2-2.5

21 Menard et al., Nucl. Fusion 2016

nsity Low-A tokamak Fusion 2.5 Pilot Plant (FPP)

Advanced Conductor Technologies www.advancedconductor.com

4

Problems to be Addressed in INFUSE Program with LBNL

CORC $^{\circ}$ cable performance in OH coils that ramp at 2 – 5 kA/s is unknown

- Inductance of the 30 50 tapes depends on the CORC[®] cable design
- Current distribution between tapes at 2 5 kA/s:
 - Driven by the terminations in short (1 5 meter long) CORC[®] cables
 - Driven by the individual tape inductance in long (200 500 meter) CORC[®] cables
- Inhomogeneous current distribution will limit the CORC[®] cable performance
- Current sharing between tapes may even out the current distribution (to some extend)

These important design factors need to be understood to optimize CORC[®] cables for operation in fast ramping Ohmic Heating coils

Development of CORC[®] Cable Toolbox at LBNL: Requirements

Requirements for the CORC® cable toolbox

- Solve magnetostatic Maxwell equations with the finite element method (→ need curl conform elements)
- Handle highly non-linear material models
- Handle thin structures
- Model quenching, current sharing and stresses

Not feasible to build upon existing commercial codebase

➡ A custom finite-element framework is designed in C++

Requirements for underlying finite-element framework

- Support state-of-the art formulations such as: h-a ("scalar potential") and h-φ ("vector potential")
- Need an open and very flexible data structure

Minimization of development effort

- Use state-of-the art open-source libraries such as
 - MUMPS
 - PETSc
 - STRUMPACK (LBNL)

Advanced Conductor Technologies www.advancedconductor.com Lagrange Element (standard FEM)

Nédélec Element (Maxwell FEM)

n]

"power law" for electric resistance

STRUMPACK

🗧 STRUctured Matrix PACKage

https://portal.nersc.gov/project/sparse/strumpack/

Development of CORC[®] Cable Toolbox at LBNL : Basic Concept

.....

A Furukawa Compan

BERKELEY LA

Development of CORC[®] Cable Toolbox at LBNL: Progress

Advanced Conductor Technologies www.advancedconductor.com

Development of CORC[®] Cable Toolbox at LBNL: Next Steps

Advanced Conductor Technologies www.advancedconductor.com

Impact of INFUSE Program

The modeling toolbox will

- Help us understand how the CORC[®] cable behavior will change when moving from short-sample length scales of 1 – 20 meters to actual Ohmic Heating coils in which single CORC[®] cable piece lengths will exceed 200 – 500 meters
- Help mitigate many of the risks to develop major magnet systems, such as the OH coils in compact fusion magnets, by optimizing the CORC[®] cable layout

