



# Update on Facilities and Activities at BNL

Ramesh Gupta





#### A Unique US Facility to Support Fusion and HEP R&D (with several upgrades – some demonstrated, some underway)

\* A unique, one-of-a-kind facility in the world for testing HTS cables, joints and insert coils in a dipole field of up to 10 T

- **❖** A large opening which allows testing of long high current HTS cables with large bend radii & HTS coils in dipole field
- **❖** Common coil design has two bores that are energized by the same coil - allows a direct comparison of two variants
- **❖ BNL** is investing ~2 M\$ to support many upgrades for FES
- ❖ High ramp rates: ~1 T/s to ~4 T/s needed for fusion tests
- ❖ Cable/coil testing with high currents: ~20 kA with power supply and ~50 kA with superconducting transformer
- **❖** High temperature test environment: 20K (4K- 40K possible)
- **❖ In-field rotation of cable/coil to study angular dependence**
- \* Requests from users and feedback from reviewers played an important role in prioritizing these upgrades. Thanks.





#### **BNL Common Coil Dipole with a Large Opening for a Variety of Tests**





https://www.bnl.gov/magnets/staff/gupta/commoncoil/cc-bnl-rapid-rnd-testing.pdf

## Upgrade for 20 K, 20 KA, 10 T Testing for Fusion



magnet

the

installation

for

ready

K Insert

**Magnet Division** 













## Facility incorporates the latest instrumentation and is a test bed for the new technology (CFS INFUSE Test)



11.7 K -> 13 K



First successful cryogenic demonstration of the method on a fusion cable

M. Marchevsky **LBNL** 



"Standalone" acoustic setup for detection and localization





Fusion instrumented with acoustic hardware. It was installed in a "cassette" that was mounted in BNL common coil structure









Cryogenic test was conducted at BNL on Feb 24-25, 2021





Temperature Control on HTS Cable ~4K to ~50 K (user provided setup, integrated with BNL cryo)

#### **Demonstration of High Ramp Rates for Fusion: up to ~3.8 T/s**

#### **CFS ARPA-E Test** (data provided by CFS)

| _             | <del>-</del>      |                    |
|---------------|-------------------|--------------------|
|               | Field, T          | dB/dt, T/s         |
| Run 01        | 7.58              | -0.57              |
| Run 02        | <mark>7.58</mark> | <mark>-0.76</mark> |
| Run 03        | <mark>7.64</mark> | <mark>-0.75</mark> |
| Run 04        | 7.62              | -0.56              |
| Run 05        | 7.61              | -0.37              |
| Run 06        | 7.60              | 0.19               |
| Run 07        | 7.59              | -0.19              |
| Run 08        | 3.78              | <b>-3.65</b>       |
| <b>Run 09</b> | <b>3.86</b>       | -3.72              |
| <b>Run 10</b> | 3.89              | -3.73              |
| Run 11        | 4.81              | -0.87              |
| Run 12        | 4.81              | -0.91              |
|               |                   |                    |







More

**BNL** 

tests

to

higher

ramp

rates

and at

higher

fields

#### Upgrades for Independent, Versatile and Lower Cost Operation

- Earlier, the test had to be run with a big cryo-plant; now upgraded to run with smaller system - significant cost-reduction
- Earlier, the test had to be run from a common control system/room; now upgraded to run independently, in parallel - significant freedom in panning new tests
- Earlier, a single power supply was used for energizing magnet and insert; now two power supplies – more options for testing











Ramesh Gupta Upgrade on Facilities and Activities at BNL

### **Upgrade to Allow In-field Rotation of HTS Cables or Coils**



# SMS INFUSE Program (slide-deck available on request)

#### Test conditions

- Temperature (4.2 K and higher temperatures)
- Field to 9 T
- Field Orientation (by rotating coil)
   (Analysis at PPPL for CS and other fusion coil types is also ongoing)

Material form, later focus
Transposed HTS tape cables in test coils



<u>Ultimate Aim</u>: Low cost HTS with > 10 kA at 20 T in R&W CS coils of > 40 cm  $\phi$ 

Infuse Meeting

December 2021



#### First coil reacted and Ic tested

- 1) Wire made, inspected
- 2) Coiling procedure established
- 3) First 2-layer coil wound, melt textured 12/14/21
- 4) Minor design deviations to be avoided in next coils
- 5) Ic tested, ~ 4 kA at 4.2K, self field

8.5 mm x 0.55 mm wire

#### INFUSE Brings Benefits of Experience at National Labs to Industry

#### **Joints for High-Temperature Superconducting Tapes**



#### Old fashion research with hand drawings and hands-on R&D



August 12, 2010 **[technical** outcome to be presented by the industry]

#### **Work in Progress:**

- **Demountable joints**
- Material in splice joint between the two HTS tapes (amount and type used)
- Material between the layers within the HTS tapes (final tapes to come from Univ of Houston)

Brookhaven Lab Physicist William Sampson **Receives IEEE Award for Applied Superconductivity** 

Research



William (Bill) Sampson, Pl





## **SUMMARY AND DISCUSSION**

- > A US facility based on the BNL common coil dipole with large opening offers unique R&D opportunities for developing HTS magnet technologies for fusion.
- > Ongoing upgrades (with internal funding) makes this facility more responsive and economical for fusion R&D. They can be further expanded/accelerated.
- > As a home to 3.6 km superconducting Relativistic Heavy Ion Collider (RHIC), and as a site of the future multi-billion-dollar Electron Ion Collider (EIC), BNL continues to have a significant experience in working with the industry.
- > As a multi-disciplinary lab, BNL can help in many research areas. Recently an "Access Brookhaven" event was held with focus on the fusion technology.

## AccessBrookhaven

ADVANCING FUSION ENERGY TECHNOLOGY



#### **Access**Brookhaven

**Advancing Fusion Energy Technology** Wednesday, October 13, 2021 1:00 p.m. – 5:30 p.m. EDT Virtual Event



https://www.bnl.gov/accessbrookhaven/events/

## Extra Slide(s)

#### Superconducting Transformer (initial work just started)

Transformer

#### Infrastructure-Test stand upgrade







355.6mm