

High Heat Flux Testing of PFCs for SPARC

3rd Annual INFUSE Workshop Dec 16th, 2021

TK Gray¹, D Brunner², T. Henderson², A Kuang³, ML Reinke², RL Romesberg⁴, GS Showers⁴, DE Wolfe⁴, DL Youchison¹, and D Yuryev²

¹Oak Ridge National Laboratory

²CFS

³PSFC/MIT

⁴Applied Research Laboratory, Penn State University

High Heat Flux (HHF) Programmatic Goals

- SPARC is a short-pulse (10 s), high power density tokamak to demonstrate net fusion energy
- baseline divertor operation is to sweep the strike point over inertially cooled divertor (>100 MW/m² divertor surface heat flux)
- INFUSE project aims to
 - Inform the divertor plasma-facing material choice 🗹 1.

Demonstrate that the plasma-facing component can survive under SPARC-relevant 2. cyclic heat loading 🗙

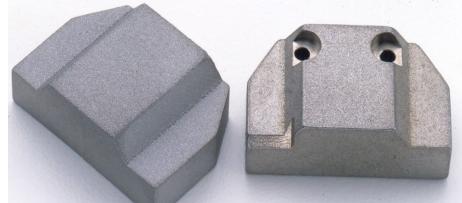
<u>INFUSE collaborators have been flexible to adapt to the evolving needs to</u> apply these aims to an in-progress PFC design activity

- design activities have led to concepts where low/high cycle fatigue at the component level is no longer a specific concern that requires HHF testing
- Improved output of program at the plasma facing material choice level

INFUSE Activity Has Adapted to SPARC Needs

- SPARC material down-selection in January 2021 chose tungsten-based materials over carbon-based, identified potential of tungsten heavy alloys
 - INFUSE testing helped to inform damage limits & failure modes which led to inclusion of this alloy in SPARC baseline PFC design
- SPARC value engineering emphasizing 'design to manufacture', led to outreach to tungsten suppliers/fabricators
 - upcoming tests to cross-compare surface cutting techniques, speed vs. heat flux handling performance & surface damage

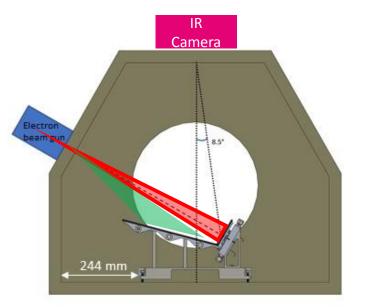
Tasks	2020				2021				2022
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1
Test calibration w/ pure-W		•	•					i	
Pure-W vs. WHA comparisons									
Pure-W fabrication comparisons			SPARL						


Why is the SPARC PFC Design Using WHA?

- favorable tests in ASDEX Upgrade divertor tiles [Neu JNM 2018]
- WHA thermal properties result in similar rise in temperature for steady-state, pulsed heat flux (up to T_{limit,WHA}), despite k(T) being different than pure-W
 - downside is the reduced temperature limit due to the presence of Ni and Fe, limiting bulk temperatures to the melt temperature ~1500 degC
- WHA behaves like a ductile material at all temperatures, not just T_w > DBBT
- WHA has a RT resistivity of ~11 $\mu\Omega\text{-cm}$ vs. ~5 $\mu\Omega\text{-cm}$ for pure-W which translates directly to eddy current load reduction

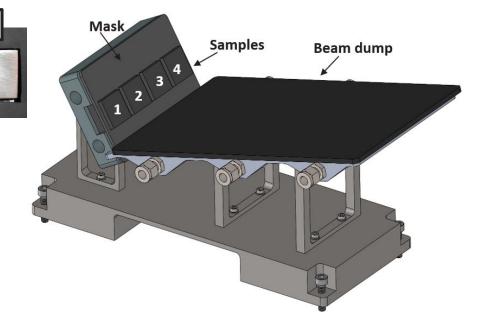
WHA has lower risk for 'cold disruptions' when using thick, inertially cooled PFM in high-field devices

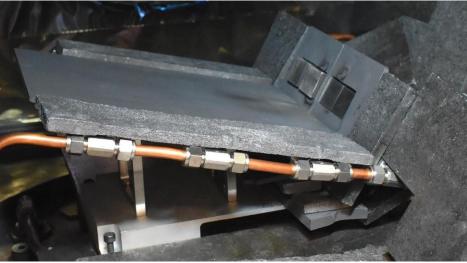
• at large QTY, WHA fabricated from near-net-shape pressing + final machining, opening up wider tile shapes at similar cost,


Copywrite HC Starck Solutions

W/WHA Tests to Failure at SPARC Heat Fluxes

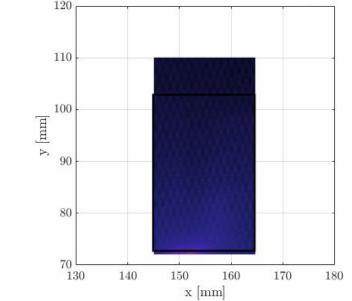
- ARL Sciaky electron beam:
 - 2 A, 17 kV electron beam
 - Focus down to ~1 mm scale.
 - Target peak heat fluxes: 100-500 MW/m²
 - Target heat flux factors: 40-100 $MW \cdot s^{0.5}/m^2$
 - PRD high end limit for ELMs, lower limits for disruptions.


W/WHA Tests to Failure at SPARC Heat Fluxes


WHA

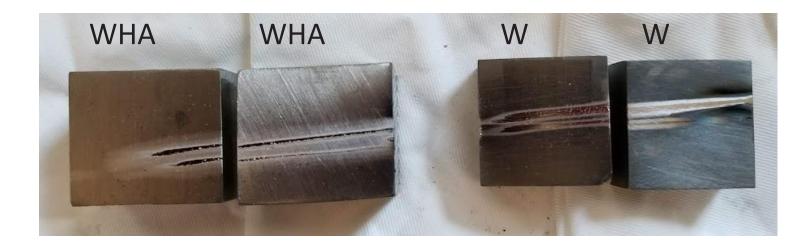
W

- ARL Sciaky electron beam:
 - 2 A, 17 kV electron beam
 - Focus down to ~1 mm scale.
 - Target peak heat fluxes: 100-500 MW/m²
 - Target heat flux factors: 40-100 $MW \cdot s^{0.5}/m^2$
 - PRD high end limit for ELMs, lower limits for disruptions.
- side-by-side comparison of WHA (Elmet ET97) and pure W tiles (hot rolled)

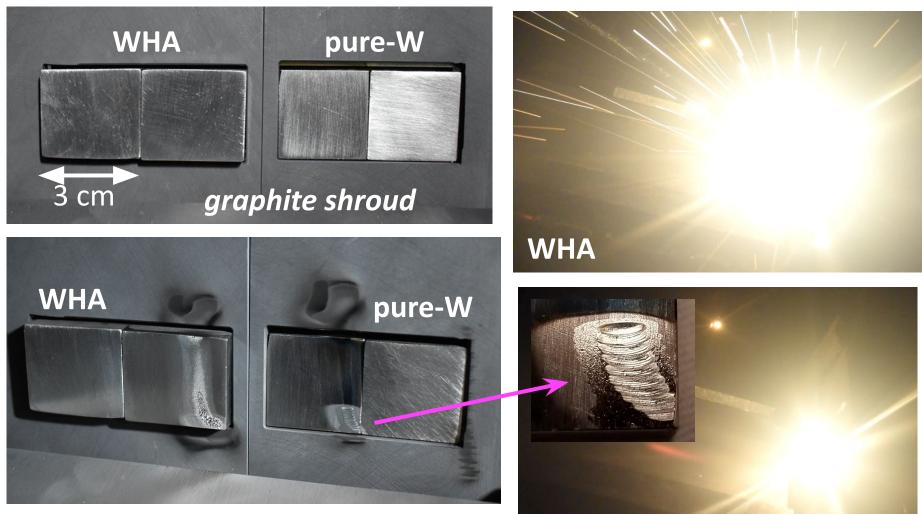


W/WHA Tests to Failure at SPARC Heat Fluxes

- ARL Sciaky electron beam:
 - 2 A, 17 kV electron beam
 - Focus down to ~1 mm scale.
 - Target peak heat fluxes: 100-500 MW/m²
 - Target heat flux factors: 40-100 $MW \cdot s^{0.5}/m^2$
 - PRD high end limit for ELMs, lower limits for disruptions.
- side-by-side comparison of WHA (Elmet ET97) and pure W tiles (hot rolled)
- diagnostics: IR and visible cameras, rear TC



Surface Flash Heating Shows Similar Melt Behavior


- estimated peak heat flux of ~500 MW/m² and a beam velocity of 120 mm/s with a FWHM of ~3 mm using simulation workflow benchmarking energy input via TCs
- suggest that flash melting due to disruptions will not be differentiating.
- consistent with previous work using plasma shock exposures [Laas FED 2020].

Slower Scans Show Differential Failure Mode

- single(ish) e-beam pass at ~50 mm/s
- estimates show
 WHA has resilience
 to ~100+ MW/m²
 transient loads
- WHA fails at >70% of the fluxes that melt pure-W
- WHA failure shows mass loss where pure-W does not



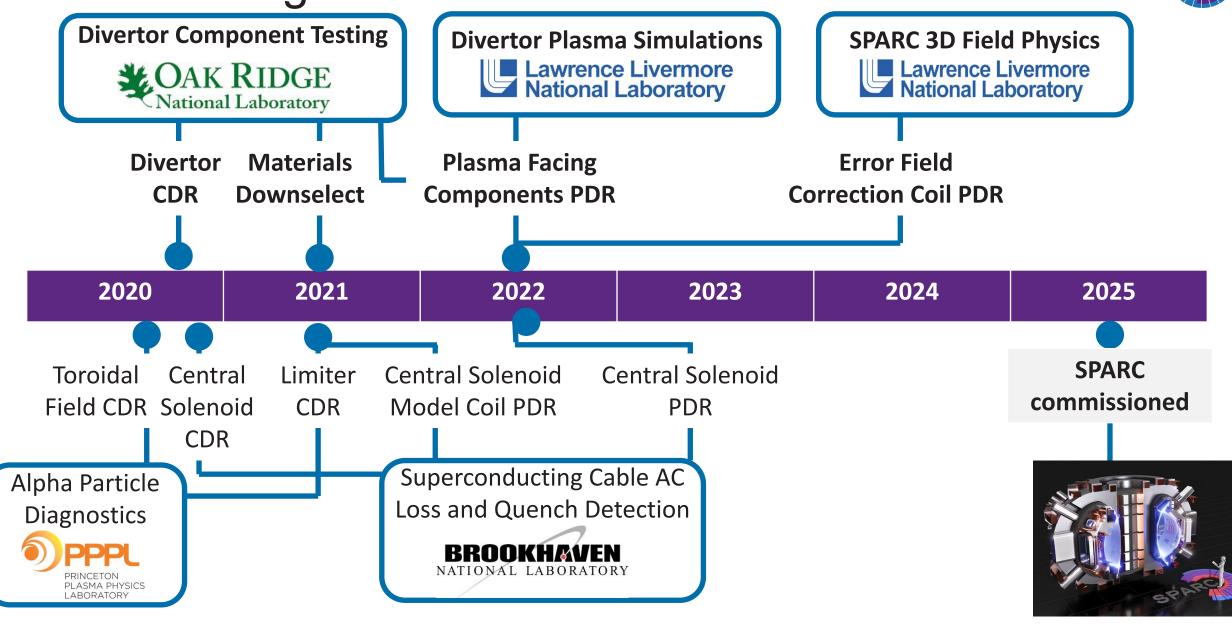
pure-W

challenges w/ beam control and interpretation support FESAC-LRP recommendation for 'additional high heat flux testing facilities'

SEM Analysis Shows Material Responses

e-beam appears to have passed over the bottom of the sample twice leading to some differential melt/material loss behavior on sample

Summary of Results and Next Steps


- SPARC material selection process in early 2021 identified tungsten but allowed for the possibility of tungsten heavy alloy
 - INFUSE project pivoted in scope to compare pure-W and WHA, but maintained original project aim to inform material selection
- differential behavior, shown at slower speed with mass loss and binder migration observed at heat fluxes >70% of those that would melt pure-W
- this work (+ DiMES testing of WHA on DIII-D) helped inform SPARC's decision for partial use of WHA in lower energy input regions of the PFCs
 - off-midplane limiters (where VDE's go) and inboard limiter (used for start-up)
- next steps:
 - fabricate modifications to test stand to allow comparative testing of pure-W samples
 - obtain tungsten samples from different vendors, with different cutting techniques
 - final e-beam testing to be completed in Q1 2022

Impacts on SPARC

- HHF tests provide useful information to guide material selection of SPARC plasma-facing materials
- CFS has access to a high heat flux exposure facility that allows for straightforward comparison (e.g. 'A to B') tests between material samples to inform internal decision making
- CFS and ORNL can now move on to comparative testing of fabrication approaches that help maintain cost and schedule w/o impacting performance
- aim is to have results to inform PDR, scheduled for March 2022

INFUSE Programs on the SPARC Timeline

SPARC