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Motivation >

o Tokamak plasmas resonate with certain 3D fields in ways that generally degrades
plasma confinement

o The fields that greatly reduce confinement and even terminate the plasma are called
Error Fields (EFs)

o Caused by non-idealities in tokamak magnets introduced during design (winding
pattern), manufacturing (saddle and ellipticity), and assembly (tilts and shifts)

o Sometimes mild degradation is desired to stabilize Edge-Localized-Modes (ELMs), and
these fields are called Resonant Magnetic Perturbations (RMPs)

o All 3D fields can brake the plasma rotation, so the RMP must be applied efficiently

o There are many possible coil solutions to correct EFs and apply RMPs, so finding an
optimum solution is challenging
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Technical Goals

- ldentify dominant Error Field spectra for core and edge resonances as well as core and edge NTV torque
- Ildentify dominant Error Field sources and associated correction coil requirements

- ldentify and compare 3D coil designs optimized to meet said requirements

-« Assess 3D coil designs’ ability to suppress ELMs while avoiding core locking events

Program Schedule

- Performance period: 12/04/2020 - 12/04/2021

“m Q1 Q2 Q3 Q4

Assessment of Conceptual Design Space _
Detailed Assessment of Conceptual Design -

Assessment of Proposed Changes for Preliminary Design _

Program successfully accomplished all technical goals
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ldentification of dominant spectra helped guide SPA%%
3D colil geometry decisions
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Statistical approach used to identify EF sources *™$
and associated correction coil requirements

- Even nominal designs can have significant amounts of error fields from windings/leads/etc.

o Optimizing windings and relative “clocking” of coils to minimize nominal error fields

o Care taken to avoiding inboard errors, which would be hard to correct with outboard EFCCs
- Monte Carlo of shifts & tilts provides statistical expectation of eventual EF for given tolerances
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Resonant magnetic perturbations (RMPs) assessed SPARCS
for edge-localized-mode (ELM) suppression

16 SPARC PRD, n=3
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INFUSE produced instructive & seafcH
practical guidance for SPARC designs

- Quickly delivered guidance to conceptual design review
- Provided detailed design assessments at a pace consistent with

CFS’ needs
o Prompt responses to quickly evolving design cycles
o Provided guidance on:
— How to formulate the SPARC General Requirements on error fields Q
— How to choose the best toroidal periodicity for the RMP
— Coil wiring schemes and power supply requirements
- The physics guidance together with engineering converged on a

coil set ready for the Preliminary Design Review
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INFUSE Programs on the SPARC Timeline sPaRCS
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