

SPARC 3D Field Physics and Support of the Non-Axisymmetric Coil Assessment

INFUSE Workshop 2021 Alex Creely (CFS) Nikolas Logan (LLNL) Carlos Paz-Soldan (Columbia) Ryan Sweeney (MIT)

SPARC

Motivation

- Tokamak plasmas resonate with certain 3D fields in ways that generally degrades plasma confinement
- The fields that greatly reduce confinement and even terminate the plasma are called Error Fields (EFs)
 - Caused by non-idealities in tokamak magnets introduced during design (winding pattern), manufacturing (saddle and ellipticity), and assembly (tilts and shifts)
- Sometimes mild degradation is desired to stabilize Edge-Localized-Modes (ELMs), and these fields are called Resonant Magnetic Perturbations (RMPs)
 - All 3D fields can brake the plasma rotation, so the RMP must be applied efficiently
- There are many *possible* coil solutions to correct EFs and apply RMPs, so finding an *optimum* solution is challenging

Program overview

Technical Goals

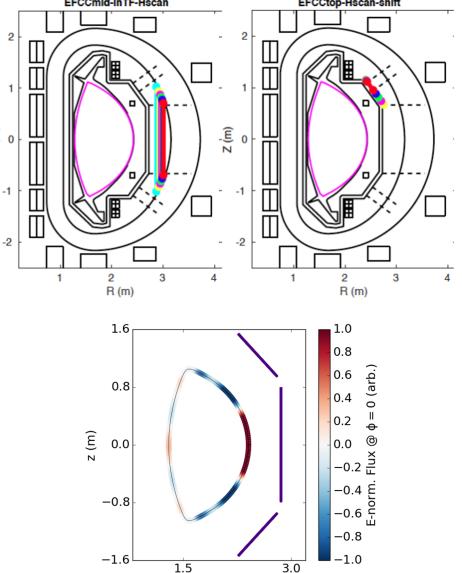
- Identify dominant Error Field spectra for core and edge resonances as well as core and edge NTV torque
- Identify dominant Error Field sources and associated correction coil requirements
- Identify and compare 3D coil designs optimized to meet said requirements
- Assess 3D coil designs' ability to suppress ELMs while avoiding core locking events

Program Schedule

• Performance period: 12/04/2020 – 12/04/2021

Phases	'20	'21			
	Q4	Q1	Q2	Q3	Q4
Assessment of Conceptual Design Space					
Detailed Assessment of Conceptual Design					
Assessment of Proposed Changes for Preliminary Design					

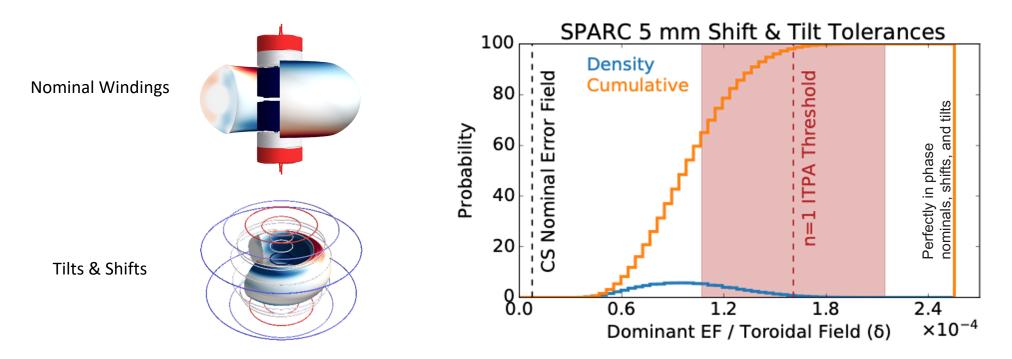
Program successfully accomplished all technical goals



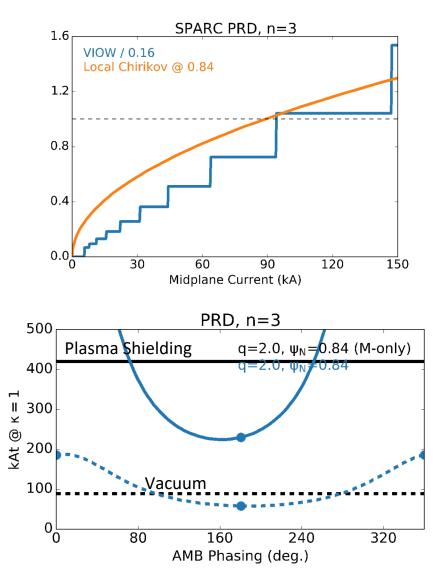
Identification of dominant spectra helped guide SPARC 3D coil geometry decisions

Z (m)

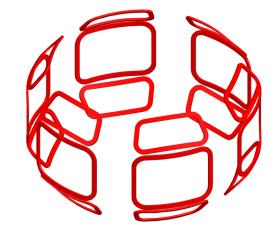
- Linear, ideal MHD can identify most amplified mode, presumed to dominate the error field (EF) physics
 - Dangerous EF is the part that "overlaps" with this mode
- Many coil geometries were explored for SPARC
 - Each evaluated by how much the field it produced overlapped with the identified dominant mode
- Dominant mode has long wavelength & high amplitude on on the low field side → build coils there
 - \circ Compatible with engineering constraints \checkmark



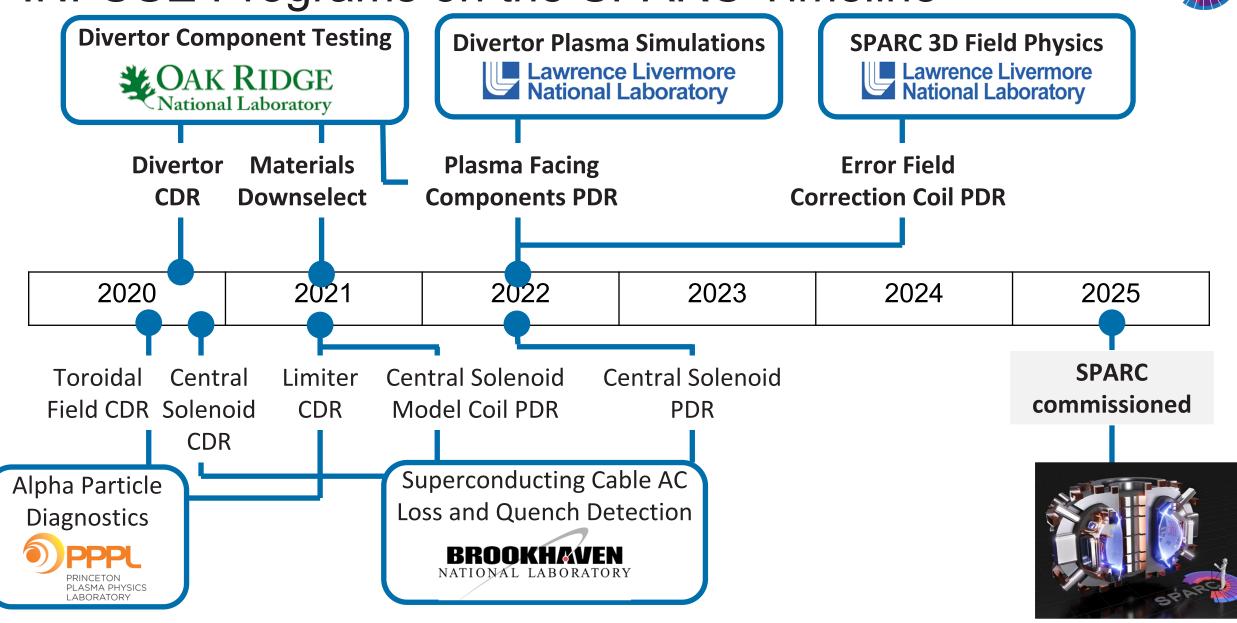
R (m)


Statistical approach used to identify EF sources and associated correction coil requirements

- Even nominal designs can have significant amounts of error fields from windings/leads/etc.
 - Optimizing windings and relative "clocking" of coils to minimize nominal error fields
 - Care taken to avoiding inboard errors, which would be hard to correct with outboard EFCCs
- Monte Carlo of shifts & tilts provides statistical expectation of eventual EF for given tolerances


Resonant magnetic perturbations (RMPs) assessed space for edge-localized-mode (ELM) suppression

- Used published vacuum criteria to set coil current requirements (like ITER)
 - Vacuum Island Overlap Width VIOW > 0.16, validated in DIII-D [1]
 - Local Chirikov κ>1 at ψ_N =0.84 also used (smooth VI dependence guides assessment of safety margins)
- n=3 targeted to avoid core tearing & utilize wealth of experience on existing machines
 - Dominant mode has shorter wavelength → phasing of multiple rows used to twist RMP appropriately
- Open questions identified: Is ELM suppression possible in strong SPARC shaping where plasma shields RMPs?
 - This will be answered during early SPARC operation



INFUSE produced instructive & practical guidance for SPARC designs

- Quickly delivered guidance to conceptual design review
- Provided detailed design assessments at a pace consistent with CFS' needs
 - Prompt responses to quickly evolving design cycles
 - Provided guidance on:
 - How to formulate the SPARC General Requirements on error fields
 - How to choose the best toroidal periodicity for the RMP
 - Coil wiring schemes and power supply requirements
- The physics guidance together with engineering converged on a coil set ready for the Preliminary Design Review

INFUSE Programs on the SPARC Timeline

SPARC