Simulations of a stable helical shear-flow stabilized plasma jet

Setthivoine You HelicitySpace Corporation setthivoine.you@helicityspace.com

Shengtai Li, Hui Li

Los Alamos National Laboratory

INFUSE Workshop, Virtual Event, Dec. 1st, 2020

P. M. Bellan, S. Pree, Caltech
C. A. Romero-Talamás, N. Marin, UMBC
M. R. Brown, Swarthmore College
Y. Ono, Univ. Tokyo
J. F. Santarius, Univ. Wisc.
S. Turyshev, NASA JPL
R. Spektor, Aerospace Corp.
A. B. Proca, PPPL
J. von der Linden, J. Sears, LLNL
K. McCollam, A. Almagri, J. Sarff, Univ. Wisc.
E. S. Lavine, Cornell
S. Mazouffre, CNRS

Helicity Drive magneto-inertial fusion concept

Experimental foundation for (I)

Dense plasma jets formed in MOCHI experiment.

Plasma gun design of MOCHI experiment

Jet is stable beyond classical Kruskal-Shafranov threshold

no. 7150: $V_{core} = -6.1 \text{ kV}; V_{skin} = -5.7 \text{ kV}; \psi_{gun} = 4 \text{ mWb}$ **I**. t = 9.5 µs II. t = 30.5 µs $\int 0.5 \text{ m}$

Jet is stable beyond classical Kruskal-Shafranov threshold with helical shear flows

LA-COMPASS 3D MHD Simulations of MOCHI

Simulation confirms long(er!) stable jet

Simulations confirm helical flow shear

Lamb-Oseen vortex

Without the 3 key ingredients, unstable jets.

No current profile With mass injection With v_z flow injection

> With current profile With mass injection No v_z flow injection

With current profile No mass injection No v_z flow injection

No mass injection

9

え

Thank you