Simulations of a stable helical shear-flow stabilized plasma jet

Setthivoine You
HelicitySpace Corporation
setthivoine.you@helicityspace.com

Shengtai Li, Hui Li
Los Alamos National Laboratory

INFUSE Workshop, Virtual Event, Dec. 1st, 2020

P. M. Bellan, S. Pree, Caltech
C. A. Romero-Talaman, N. Marin, UMBC
M. R. Brown, Swarthmore College
Y. Ono, Univ. Tokyo
J. F. Santarius, Univ. Wisc.
S. Turushev, NASA JPL
R. Spektor, Aerospace Corp.
A. B. Proca, PPPL
J. von der Linden, J. Sears, LLNL
K. McCollam, A. Almagri, J. Sarff, Univ. Wisc.
E. S. Lavine, Cornell
S. Mazouffre, CNRS
Helicity Drive magneto-inertial fusion concept

Plectonemic plasma jets

= non-axisymmetric double helical Taylor states [SSX, MOCHI]

Magnetic reconnection-heating

Arbitrary number \((N \gg 2) \) of plasma jets

Peristaltic magnetic compression

⇒ \(P_{fus} \propto N^{3/2} \)

Exhaust

Experimental foundation for (I)

Dense plasma jets formed in MOCHI experiment.

Plasma gun design of MOCHI experiment

Jet is stable beyond classical Kruskal-Shafranov threshold

\[V_{\text{core}} = -6.1 \text{ kV}; \quad V_{\text{skin}} = -5.7 \text{ kV}; \quad \psi_{\text{gun}} = 4 \text{ mWb} \]

I. \(t = 9.5 \mu s \)
II. \(t = 30.5 \mu s \)
III. \(t = 55.5 \mu s \)

Jet is stable beyond classical Kruskal-Shafranov threshold with helical shear flows

Lamb-Oseen vortex
LA-COMPASS 3D MHD Simulations of MOCHI

Engine region

Ideal MHD region (open boundaries)

Imposed Core and Skin profiles in Engine Region:
1) Mass injection (\dot{m}) imposed
2) Kinetic energy (v_z) imposed
3) Current profile (B_{tor}) imposed

Core Skin “Outside”

Figure 1. (a) Log(n) contours. (b) n^2 plot which simulates light emission ($\propto n^2$).
Simulation confirms long(er!) stable jet
Simulations confirm helical flow shear

\[T = 35.9 \mu s, \text{ number density } n^2_{\text{p}} \left[m^{-3} \right] \]

MOCHI wall

72 cm

Lamb-Oseen vortex

Core Skin

“Outside”

Axial flow shear

density/pressure, \(T = 36.3 \mu s, z = 72 \text{cm} \)

velocity, \(T = 36.3 \mu s, z = 72 \text{cm} \)
Without the 3 key ingredients, unstable jets.

- No current profile
- With mass injection
- With v_z flow injection

- With current profile
- With mass injection
- No v_z flow injection

- With current profile
- No mass injection
- No v_z flow injection
Thank you