Recent Progress of High Harmonic Fast Wave (HHFW) Project in Collaboration with PPPL*

X. Yang¹, <u>N. Bertelli²</u>, M. Ono², S. Shiraiwa², T. DeHaas¹, F. Ceccherini¹, L. Galeotti¹, S. Dettrick¹, and the TAE Team

> ¹ TAE Technologies, Inc., USA ² Princeton Plasma Physics Laboratory, USA

The 2nd INFUSE Workshop, December 1-2, 2020

Motivation and Strategic Plans

- Why do we use HHFW electron heating? Simulation survey demonstrates that HHFW is a promising electron heating scenario for FRC plasma
 - Has excellent wave penetration into FRC plasma core; doesn't suffer from a cut-off at high density.
 - Has near 100% single pass power absorption; bulk electrons heating.
 - Control RF power partition between electrons and ions through antenna relative phasing;
 - > Decouple heating and fueling, help enhance NBI heating and current drive.
- Use LAPD facility at UCLA as the test bed to conduct following crucial studies
 - HHFWs to plasma coupling and propagation (phased-array 4-strap RF antenna)
 - □ Model validation: benchmarking Petra-M full wave code with experiment measurements
- Collaborate with PPPL to develop HHFW as an enabling electron heating actuator
 - Perform HHFW simulations in FRC plasma by using Petra-M full wave code and phased-array RF antenna
 - Optimize high power enabling HHFW antenna configuration for beam-driven C-2W FRC device
 - May utilize the HHFW engineering and simulation tools developed at PPPL to design 4 MW HHFW system

RF System Setup

- 4-strap antenna with different relative phase (180°, 90°, 60°, 45°, 30°) between straps
- 4 broadband (1 MHz 35 MHz) RF amplifiers with output power at 400 W each unit
- Antenna (position of antenna front surface is movable from r = 35 cm inward up to r = 15 cm
- $B_0 = 1000 \text{ G}, f = 10 \text{ MHz}$ in this RF campaign
- Forward and reflected RF power are measured by directional couplers

Efficient Fast Wave Coupling at All Phases Has Been Achieved

180⁰ phasing

- Fast wave coupling (for all phases) increases as antenna approaches denser plasma
- Fast wave can couple into plasma core even when antenna close to the wall, where n_e < 1x10¹² cm⁻³
- Fast wave propagation direction is well controlled by relative phase between antenna straps
- No slow wave has been observed, in good agreement with calculations of fast wave dispersion relation

R ____ = -35 cm

X (CM)

15 10 5

-5 -10

-25

-20 -15

(cm)

Qualitative Agreement between Initial Simulations and Experimental Data

Norman – an Advanced Beam-Driven FRC Plasma Device

Parameter	Value
B _{ext}	~ 0.1 – 0.3 T
r _s	~ 40
Ls	2-3 m
n _e	(1 – 3)×10 ¹⁹ m ⁻³
$T_{tot} = T_i + T_e$	up to 3 keV
Pulse length (ms)	up to 30

Petra-M: integrated multi-physics FEM platform

- Geometry/mesh generation
 - Utilize GMSH / Open CASCADE
- FEM assembly and solve
 - FEM interfaces from <u>MFEM</u>
 - Tightly integrated with πScope Python workbench
 - RF Physics module (1D/2D/3D)
 - Weakform module
 - Multiphysics coupling
- Solver/Post-processing
 - Steady State and Time dependent solver
 - MUMPS/Strumpack direct solver
 - Hypre iterative solvers
 - Visualization on πScope
- Scales from laptop to cluster

(this work: inhomogeneous Maxwell eq. in 3D in frequency domain)

[Shiraiwa et al, EPJ Web of Conf. **157**, 03048 (2017), N. Bertelli et al, AIP Conf. Proc. **2254**, 030001 (2020)]

Magnetic field equilibrium obtained by the LR_eqMI code

Generated a 3D geometry from this shape (next slide)

[Galeotti et al, Plasmas 18, 082509 (2011)]

Create a 3D geometry and mesh

Two regions representing two straps antenna (as initial step)

3D full-wave simulations

- Surface J boundary conditions representing the antenna
- frequency = 8 MHz, 180-degree antenna phasing
- Electron density = constant = 2 x 10¹⁹ m⁻³
- Anisotropic cold plasma in the torus with artificial collisions

3D full-wave simulations

- Surface J boundary conditions representing the antenn
- f = 8 MHz, 180-degree antenna phasing
- Electron density = constant = 2 x 10¹⁹ m⁻³
- Anisotropic cold plasma in the torus with artificial collisions

Conclusions

- Use LAPD facility at UCLA as the test bed to conduct following crucial studies
 - HHFWs to plasma coupling and propagation (phased-array 4-strap RF antenna)
 - Model validation: benchmarking Petra-M full wave code with experiment measurements
- Collaborate with PPPL to develop HHFW as an enabling electron heating actuator
 - Perform HHFW simulations in FRC plasma by using Petra-M full wave code and phased-array RF antenna

Future steps:

- Investigate the impact of electron density and simplified strap antenna in the RF modeling
- Consider to have a more realistic antenna and device geometry

Acknowledgements

- TAE Technologies' HHFW project for C-2W FRC plasma device is partially funded by US DOE INFUSE program 2019/20 and 2020/21 awards.
- LAPD Group at UCLA for supporting RF system installation and experiment campaigns
- The experiments were performed at UCLA's Basic Plasma Science Facility, which is supported by US DoE, and the NSF.

