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Motivation and Strategic Plans
• Why do we use HHFW electron heating? – Simulation survey demonstrates that 

HHFW is a promising electron heating scenario for FRC plasma 
 Has excellent wave penetration into FRC plasma core; doesn’t suffer from a cut-off at high density.

 Has near 100% single pass power absorption; bulk electrons heating.

 Control RF power partition between electrons and ions through antenna relative phasing; 

 Decouple heating and fueling, help enhance NBI heating and current drive. 

• Use LAPD facility at UCLA as the test bed to conduct following crucial studies
 HHFWs to plasma coupling and propagation (phased-array 4-strap RF antenna)

 Model validation: benchmarking Petra-M full wave code with experiment measurements

• Collaborate with PPPL to develop HHFW as an enabling electron heating actuator
 Perform HHFW simulations in FRC plasma by using Petra-M full wave code and phased-array RF antenna

 Optimize high power enabling HHFW antenna configuration for beam-driven C-2W FRC device

 May utilize the HHFW engineering and simulation tools developed at PPPL to design 4 MW HHFW system
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RF System Setup

• 4-strap antenna with different relative phase 
(1800, 900, 600, 450, 300) between straps

• 4 broadband (1 MHz – 35 MHz) RF amplifiers 
with output power at 400 W each unit

• Antenna (position of antenna front surface is 
movable from r = 35 cm inward up to r = 15 cm

• B0 = 1000 G, f = 10 MHz in this RF campaign

• Forward and reflected RF power are measured 
by directional couplers
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(Prior to cathode upgrade in 2020)
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Efficient Fast Wave Coupling at All Phases Has Been Achieved 
• Fast wave coupling (for all phases) increases as 

antenna approaches denser plasma

• Fast wave can couple into plasma core even when 
antenna close to the wall, where ne < 1x1012 cm-3

• Fast wave propagation direction is well controlled by 
relative phase between antenna straps

• No slow wave has been observed, in good agreement 
with calculations of fast wave dispersion relation
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Qualitative Agreement between Initial Simulations and 
Experimental Data

3D mesh generated for the 4-strap 
HHFW antenna and LAPD 
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Norman – an Advanced Beam-Driven FRC Plasma Device   
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Petra-M: integrated multi-physics FEM platform
• Geometry/mesh generation

– Utilize GMSH / Open CASCADE

• FEM assembly and solve
– FEM interfaces from MFEM
– Tightly integrated with πScope Python workbench
– RF Physics module (1D/2D/3D)
– Weakform module

• Multiphysics coupling

• Solver/Post-processing
– Steady State and Time dependent solver
– MUMPS/Strumpack direct solver
– Hypre iterative solvers
– Visualization on πScope

• Scales from laptop to cluster [Shiraiwa et al, EPJ Web of Conf. 157, 03048 (2017), 
N. Bertelli et al,. AIP Conf. Proc. 2254, 030001 (2020)] 

PDEs
(this work: inhomogeneous Maxwell eq. 

in 3D in frequency domain)

http://www.mfem.org/
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Magnetic field equilibrium obtained by the LR_eqMI code  

[Galeotti et al, Plasmas 18, 082509 (2011)]
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Generated a 3D geometry 
from this shape (next slide)
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Create a 3D geometry and mesh  

Two regions representing
two straps antenna

(as initial step)
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3D full-wave simulations

• Surface J boundary conditions representing the antenna
• frequency = 8 MHz, 180-degree antenna phasing
• Electron density = constant = 2 x 1019 m-3

• Anisotropic cold plasma in the torus with artificial collisions

Ex
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3D full-wave simulations

• Surface J boundary conditions representing the antenna
• f = 8 MHz, 180-degree antenna phasing
• Electron density = constant = 2 x 1019 m-3

• Anisotropic cold plasma in the torus with artificial collisions
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Conclusions
• Use LAPD facility at UCLA as the test bed to conduct following crucial studies

– HHFWs to plasma coupling and propagation (phased-array 4-strap RF antenna)
– Model validation: benchmarking Petra-M full wave code with experiment measurements

• Collaborate with PPPL to develop HHFW as an enabling electron heating actuator
– Perform HHFW simulations in FRC plasma by using Petra-M full wave code and phased-array 

RF antenna

Future steps:
• Investigate the impact of electron density and simplified strap antenna in the RF 

modeling
• Consider to have a more realistic antenna and device geometry
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