

HPC Industrial
Partnerships Program

Oak Ridge National Laboratory

Suzy Tichenor
Director, Industrial Partnerships Program
Computing and Computational Sciences

DOE/Office of Science Computing User Facilities

DOE's Office of Science Advanced Scientific Computing Research (ASCR) Computation User Facilities

NERSC Cori is 30 PF

ALCF Theta is 11 PF

OLCF Summit is 200 PF

- Oak Ridge Leadership
 Computing Facility
 (OLCF):DOE Leadership
 Computing Facility
- Argonne Leadership
 Computing Facility (ALCF):
 DOE Leadership Computing
 Facility
- National Energy Research Scientific Computing Center (NERSC): A scalable parallel computing facility for Office of Science research needs

Summit

- Peak of 200 Petaflops (FP₆₄) for modeling & simulation
- Peak of 3.3 ExaOps (FP₁₆) for data analytics and artificial intelligence
- 4,608 nodes
- Dual-rail Mellanox EDR InfiniBand network
- 250 PB IBM file system transferring data at 2.5 TB/s

- Node architecture
 - 2 IBM POWER9 processors
- 6 NVIDIA Tesla V100 GPUs
- 608 GB of fast memory
 (96 GB HBM2 + 512 GB DDR4)
- 1.6 TB of non-volatile memory

Frontier (2021)

- Partnership between ORNL, Cray, and AMD
- The Frontier system will be delivered in 2021
- Peak Performance greater than 1.5 EF

- Composed of more than 100 Cray Shasta cabinets
 - Connected by Slingshot[™] interconnect with adaptive routing, congestion control, and quality of service
- Node Architecture
 - An AMD EPYC[™] processor and four Radeon Instinct[™] GPU accelerators
 - Fully connected with high speed AMD Infinity Fabric links
 - Coherent memory across the node
 - 100 GB/s injection bandwidth
 - Near-node NVM storage

ACCEL Industrial HPC Partnership Program

How the program works

Key Points About Our Industry Program

- Working with firms actively engaged in modeling and simulation...and taking them to their next HPC level.
 - Big firms, small firms and those in between
 - You don't have to be at 200 Petaflops (Summit).
 - But, you can't be at "ground zero."
 - We try to "right-size" the problems user goals to OLCF capabilities and mission.
- Procedures to protect proprietary information.
- Procedures to comply with export control regulations.

Our Approach

- High touch, customized program:
- One size does not fit all
- We are an "innovation" shop, not a "cycles" shop
- Goal is high value-add, high impact science/engineering results
- Requires more attention, but fosters deeper relationships

Gaining Access to our User Facility (OLCF)

You apply for time to run your problem on our supercomputers

- Multiple pathways to apply for access depending on:
 - Amount of time needed.
 - Ability of software to scale and take advantage of our systems.
 - Your timing...some pathways are annual calls for proposals, some are open all year long.
- There is not a special "set-aside" for industry
- Industry applies for time and competes in each pathway along with researchers from academia and government.

Problems to Bring to Our User Facilities: High Risk – High Return

Strategic
High Risk
Breakthrough
Innovation

High Return

Industrial HPC Partnership Program

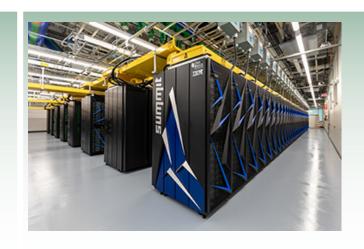
Helping Companies Succeed

Who's Been Working With Us?

What Companies Are Doing With Us

- Scaling current problems for greater accuracy.
- Tackling new, competitively important problems that can not be addressed with inhouse systems/software.
- Conducting large scale Design of Experiment (DOE) and Multidisciplinary Optimization (MDO) problems.
- Exploring machine learning/AI algorithms and techniques and testing them at scale on important problems

What Companies Are Doing With Us


- Testing pathways to build an internal ROI case for additional system and/or software
- Testing internally developed software at scale; testing GPUs
- Achieving breakthrough insights and understanding, and/or discovering something new.
- Gaining a "crystal ball" look into advanced HPC systems and software, and a head start in using them.

We Provide Access To...

Talent Training Tools

So that industry can:

Accelerate innovation

Reduce risk

Lower costs

Solve the seemingly intractable

Predict the future

Getting Started...

Start with a conversation about your computing needs!

- Dennis L. Youchison, Ph.D. PE
 - INFUSE Program Director
 - youchisondl@ornl.gov
- Suzy Tichenor
 - Director Industrial Partnerships
 - tichenorsp@ornl.gov

