

FUSION FORUM

Introduction and Kickoff

Andrew Sowder Sr. Technical Executive, Advanced Nuclear Technology

Innovation Network for Fusion Energy (INFUSE) Workshop December 1, 2020

Electric Power Research Institute...Born in a Blackout

- Mission: advancing safe, reliable, affordable and environmentally responsible electricity for society
- Independent, nonprofit center for <u>collaborative</u> public interest energy and environmental research
- Major offices in Palo Alto, CA, Charlotte, NC, and Knoxville, TN
 - Laboratories in Knoxville, Charlotte and Lenox, MA
 - In-country presence around the world
- International membership and reach:
 - International members > 25% of EPRI research (~50% for nuclear)
 - EPRI members generate > 90% of the electricity in the United States (100% of US nuclear)
 - EPRI programs engage > 75% of nuclear operators globally

New York City: The Great Northeast Blackout, 1965

A Research Portfolio Spanning Entire Electricity Sector

Generation

- Advanced Coal Plants, Carbon Capture and Storage
- Combustion Turbines
- Environmental Controls
- Major Component Reliability
- Materials and Chemistry
- Operations and Maintenance
- Power Plant Water Management
- Renewable Energy

Nuclear

- Advanced Nuclear Technology
- Chemistry, Low-Level Waste and Radiation Management
- Equipment Reliability
- Fuel Reliability
- Long-Term Operations
- Materials Degradation/Aging
- Nondestructive Evaluation and Material Characterization
- Risk and Safety Management
- Used Fuel and High-Level Waste Management

Power Delivery and Utilization

Energy & Environment

- Environmental Sciences: Air and Multimedia
- Strategic Analysis and Technology Assessments
- Environmental Sciences: Groundwater and Land Management
- Workforce and the Public: Health Assessment and Safety
- Environmental Sciences: Water and Ecosystems

Distribution Utilization

- Distribution
- Energy Utilization
- Information, Communication, and Cyber Security

Transmission

- Grid Operations and Planning
- Transmission and Substations

EPRI Focus on Advanced (Fission) Reactors

Andrew Sowder Sr. Technical Executive, Advanced Nuclear Technology <u>asowder@epri.com</u>

Innovation Network for Fusion Energy (INFUSE) Workshop December 1, 2020

Image: Market with the second seco

GEN I & II

Early demonstrations through GW-scale commercial fleets

- Diversity of designs
- Diversity of vendors
- Diversity within vendors
- Limited standardization
- Aggressive build rates
- Evolving regulations

GEN III/III+

Evolutionary designs, GW-scale +

Evolving Technologies, Markets, and Missions for Nuclear

- Convergence on ALWRs
- Passive safety
- Standardization
- Integration with licensing
- Emergence of SMRs

EPRI and European utilities establish LWR-centric requirements

MWe-scale expands technology options

- Heat pipe cooling
- Remote deployment
- New markets
- Competition with diesel

Advanced Reactors

Beyond large LWRs: GEN IV, non-LWRs, lwSMRs

- Aggressive cost and schedule targets
- Competitiveness via new missions and customers
- Focus on innovation, tension with standardization?
- Evolving regulatory frameworks

EPRI launches AR Owner-Operator Requirements

Advanced Nuclear Technology (ANT) Program Focus

From project initiation through initial operation

ANT is an extension of your team

Expanding AR Community Engagement in EPRI

Renewed ANT Program for the Next Generation Plants

www.epri.com

Advanced Manufacturing

Goal: Identify, develop, qualify and implement more economical manufacturing technologies that enable:

Higher Quality Components • Reduced Lead Times • Alternative Supply Chains • Cost Competitiveness

Advanced Manuf. Demonstration Project

Advanced Welding <u>Techniques</u>

Adaptive Feedback Welding

ANT + WRTC

Modular In-Chamber EBW

© 2020 Electric Power Research Institute, Inc. All rights reserved.

Engineering and Construction

Goal: Identify, develop, qualify engineering and construction technologies that enable:

Reduced Cost • Increased Quality • Improved Efficiency

Engineering Solutions Siting Guide Design

URD

High Strength Concrete and Reinforcement

Experimental Testing and

NDE

Concrete Optimizations

www.epri.com

© 2020 Electric Power Research Institute. Inc. All rights reserved.

Commissioning and Initial Operations

Goal: Ensure a smooth transition from construction to commissioning, and then to initial operations by:

New Plant Startup • Lessons Learned • Technology Transfer

Develop detailed guidance for all phases of a new plant project: Project Initiation, Pre-construction Commissioning and Initial Operations

<u>New Products</u>

Guidance and Best Practices for Construction Tests

Analysis of Recent Startups

Existing Needing Updates

Startup Program Guidelines

Establishing a Maintenance Program for New Builds

© 2020 Electric Power Research Institute, Inc. All rights reserved.

Fission Offers a <u>Unique</u> Bundle of Energy Attributes (Fusion Too!)

Other low carbon options co-dependent on maturity of auxiliary technologies.

Advanced Reactors

Goal: Enable and accelerate commercialization of advanced reactors by:

Aligning Design Attributes with End-User Needs • Increasing Understanding • Addressing Technology Gaps

Strategic Analysis and Technology Assessment

Expanded Flexibility Concept

Attribute	Sub-Attribute	Benefits
Operational Flexibility	Maneuverability	Load following
	Compatibility with Hybrid Energy Systems and Polygeneration	Economic operation with increasing penetration of intermittent generation, alternative missions
	Diversified Fuel Use	Economics and security of fuel supply
	Island Operation	System resiliency, remote power, micro-grid, emergency power applications
Deployment Flexibility	Scalability	Ability to deploy at scale needed
	Siting	Ability to deploy where needed
	Constructability	Ability to deploy on schedule and on budget
Product Flexibility	Electricity	Reliable, dispatchable power supply
	Process Heat	Reliable, dispatchable process heat supply
	Radioisotopes	Unique or high demand isotopes supply

© 2020 Electric Power Research Institute. Inc. All rights reserved.

Technology Development and Transfer

TRISO Fuel Qualification

AR Material Gap Analysis

2 3 3 UO₂ Pellets

Mo-alloy
"Zr-alloy or Al-containing stainless steel or alternate
"Soft liner of Zr-alloy or alternate

AR (Gen IV) Material Gap Analyses Published 2019 - 2020 Downloadable at EPRI.com for Free

Austenitic Stainless Steels

316H SS	Extend BPV-III Div 5. Code properties to include time dependent behavior (Creep. Creep fatigue)	
	Development and demonstration of cladding (Mo rich) for protection	
316FR SS	Code qualification properties for ASME code Sec III Div 5 for 316FR including time dependent properties	
Type 15-15Ti SS	Verification of swelling resistance	
	Development of code properties for 15-15Ti material design	
Alumina Forming SS	Demonstration of adequate resistance to irradiation/swelling at expected high dpa	
	Development of processing and joining of alumina forming austenitic stainless steels	
D9 Stainless Steel	Development of for ASME Code Sec III Div 5 properties (including time dependent properties) for D9	
	Development of swelling behavior at long times under realistic conditions – demonstrate adequacy	

Ferritics-Martensitics and Low Alloy Steels

Ferritic-Martensitic9Cr	Demonstration of adequate resistance to swelling at high fluence range.	
	Time dependent properties for ASME Code Sec III Div 5.	
	Development of fabrication and effective joining methods	
Ferritic-Martensitic12Cr	Demonstration of adequate resistance to swelling at high fluence range.	
	Time dependent properties for ASME Code Sec III Div 5.	
	Development of fabrication and effective joining methods	
Ferritic Martensitic	Validation of commercial reliability – Properties sensitivity to heat treatment/local microstructures	
	Response to fabrication processes – welding practices	
LAS	Time dependent and fatigue properties for ASME code Sec III Div 5	

Nickel-Based Alloys

Hastelloy N	Demonstration of radiation tolerance of Hast N variants (Proper understanding of chemistry→ microstructure	
	properties	
	Development of properties for ASME Code Sec III Div 5 certification	
800H and 617	Summary Document of Properties	

- Identify candidate materials for major AR families:
 - SFRs 3002016949
 - HTGRs/GFRs 3002015815
 - LFRs 3002016950
 - MSRs 3002010726
- Review available data for implementation into designs
- Outline development and validation programs

Economics and Competitiveness of Advanced Nuclear

U.S. example: Exploring the Role of Advanced Nuclear in Future Energy Markets. March 2018, Report 3002011803

Key drivers influencing

Competition (technology)

Energy and environmental

Cumulative nuclear additions through 2050 (GW) across a range of sensitivities (horizontal axis) and nuclear capital costs (dots)

Fusion and fission look the same to current capacity expansion models.

