

Advanced Materials and Manufacturing: *Moving R&D to Demonstration*

Marc Albert, Senior Technical Leader David Gandy, Senior Technical Executive

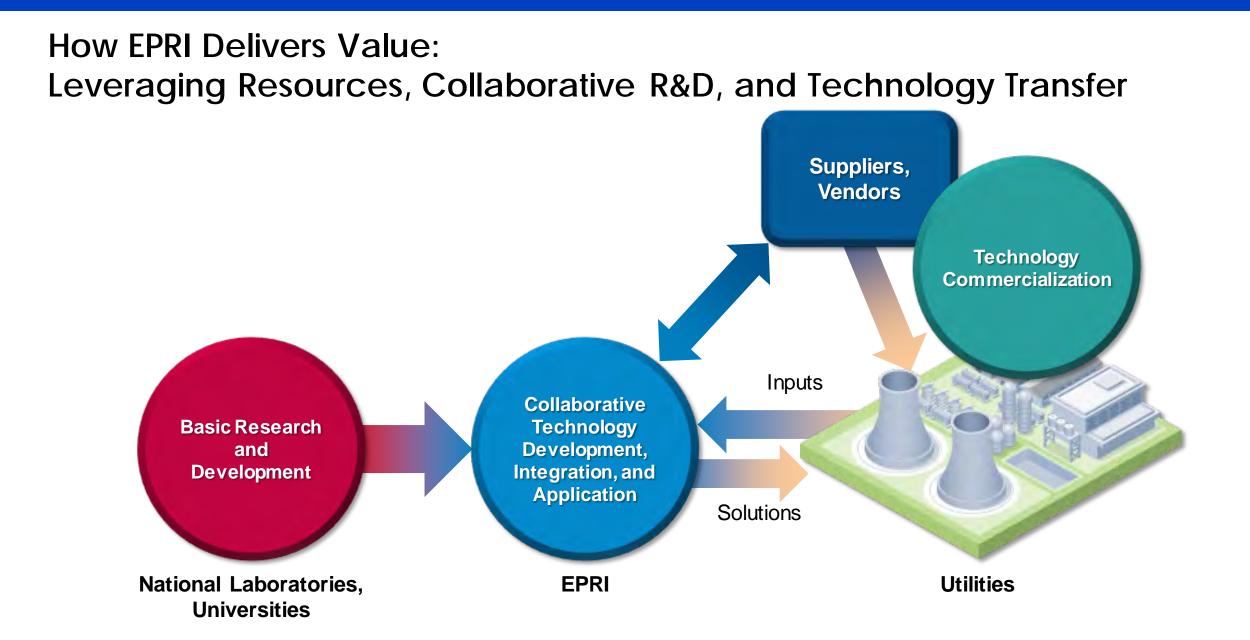
INFUSE Workshop December 1-2, 2020

✓ in f
 www.epri.com
 © 2020 Electric Power Research Institute, Inc. All rights reserved.

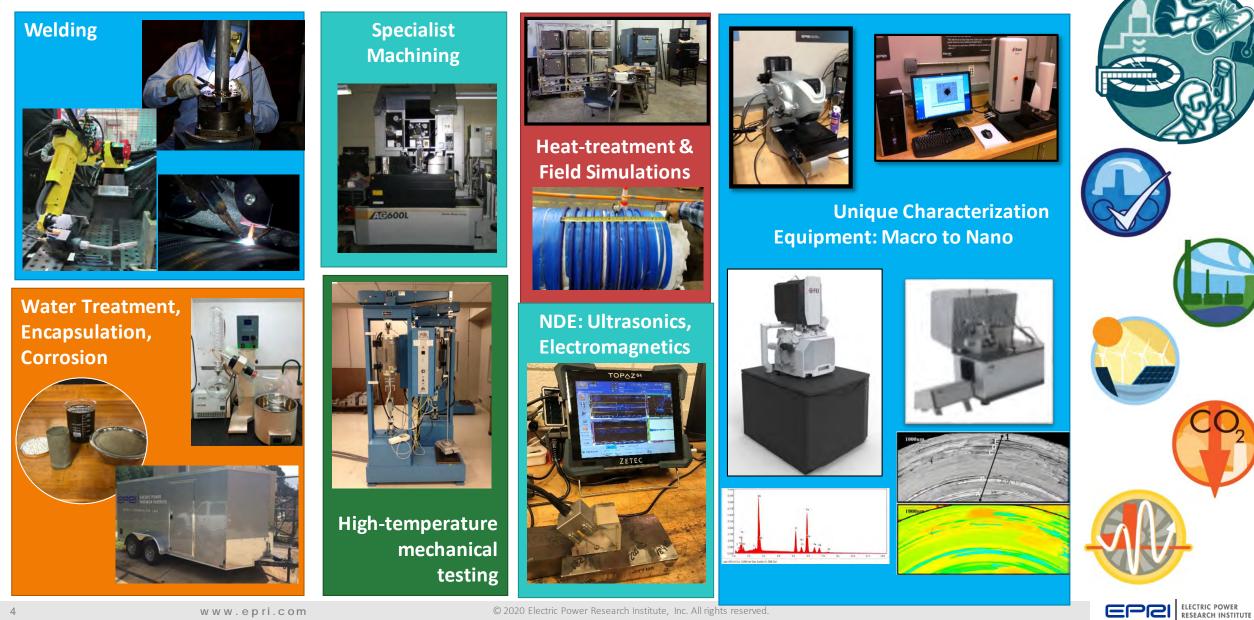
Outline

- EPRI Collaborative Model
- Cross-Sector Technologies
 - EPRI Lab Capabilities
- Tools in the Toolbox
 - Advanced Materials Development
 - Advanced Manufacturing Methods
- R&D → Demonstration

EPRI RESEARCH AREAS


www.epri.com

Energy & Environment


Power Delivery & Utilization

Laboratory Resources for Generation-Nuclear Sectors & Institute

© 2020 Electric Power Research Institute. Inc. All rights reserved.

New Build: EPRI ANT Program Technical Focus Areas

Advance Reactor Program (AR)

- Strategic analysis and economics, technology assessment and tool development (ex. PHA-PRA), materials, owner-operator requirements
- Engineering and Construction Innovation (ECI)
 - Siting, design, construction materials, and construction activities of the plant, including modular construction
- Advanced Manufacturing and Materials (AMM)
 - Class 1, 2, and 3 piping systems and related components such as pressure vessels, valves, heat exchangers, and pumps
 - Optimize methods for fabrication, installation, inspection, and operations, including chemistry and new applications of materials and components

Commissioning and Initial Operations (C&IO)

- Developing the technical focus to support site transitioning from construction to startup, initial operations, and long-term operations
- Improving technology transfer of EPRI research for nuclear operations

Ability to leverage investments in common R&D areas

Fusion Energy Technology

What will it take to bring fusion to market?

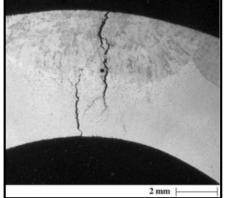
And How EPRI can Help...

- Technologies that are:
 - mature (demonstration)
 - compelling (new attributes and capabilities, worth the risk)
 - competitive (cost and value)

Customers who:

- understand (informed and engaged)
- believe (evidence of performance)
- need (business case)

Advanced Manufacturing and Materials


Unanticipated materials challenges in first-of-a-kind applications and demonstrations in power generation

New Environments

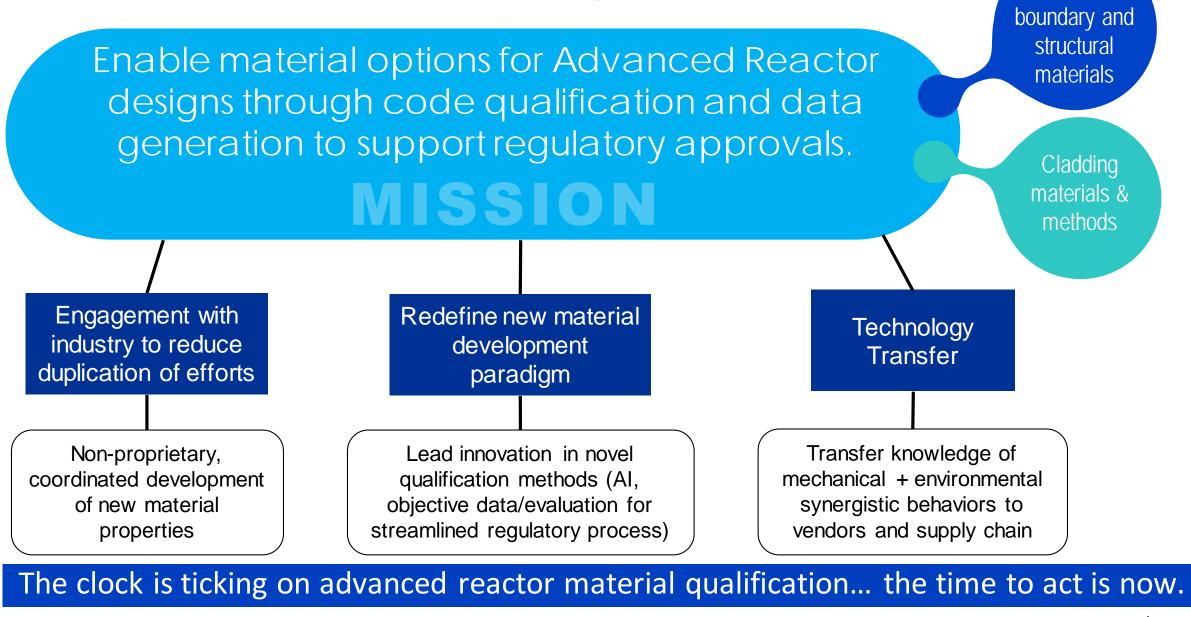
New Materials

Codes, Standards, and Specifications

Materials election & environmental effects

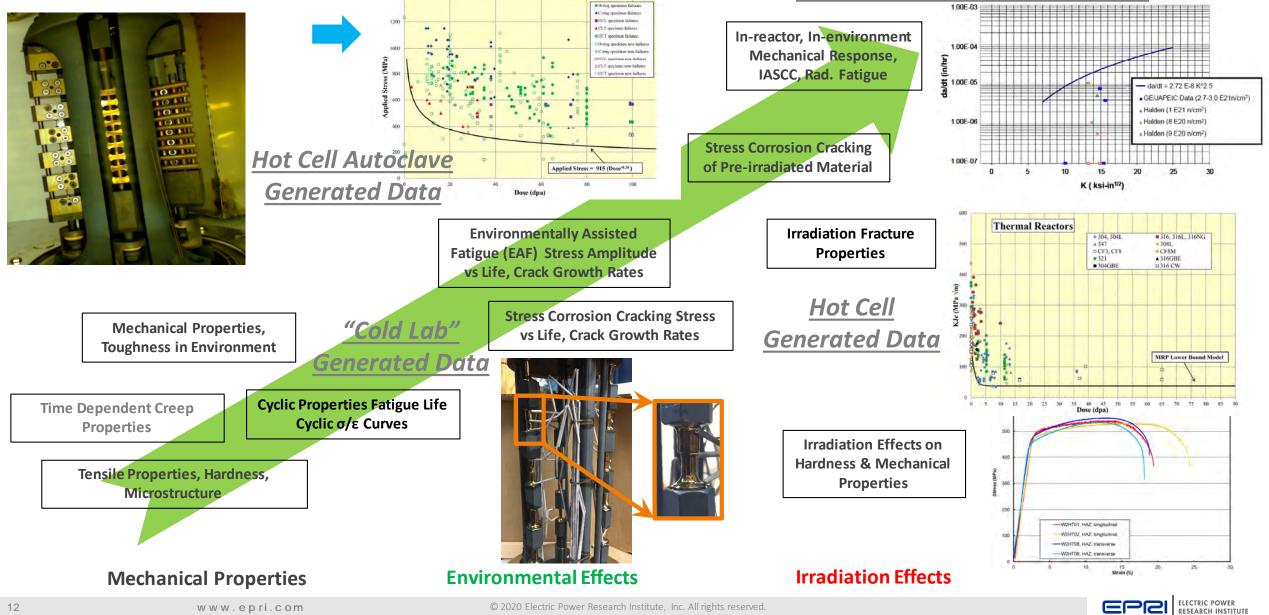
Manufacturing and fabrication challenges

Materials research during <u>Design</u> and continuing through <u>Demonstration</u> reduces overall project risk



Advanced Materials

Advanced Materials Development



11

Pressure

Paradigm: Data Generation for Materials and Structures in Light Water Reactors <u>e.g. IFE Halden Generated Data</u>

EPRI Thoughts on Supporting Commercialization of New Gen

- Lots of "white space" compared to the data that supports current generation fleet (fossil and nuclear)
- Immediate need for new materials/properties to be developed for high temp, irradiation, corrosion
- Some "simple properties" are available but many gaps remain for performance over duration of service under new conditions
- Need progression from "simple properties" to developing properties under combined actions of variables
- EPRI Advanced Materials Gap studies:
 - Identify potential materials
 - Develop roadmaps for validation of materials and design data
 - Coordinate materials development and validation programs
 - Four Materials Gap Studies for MSRs, SFRs, LFRs, HTGRs/GFRs published in 2019 and 2020: Reports 3002010726, 3002016949, 3002016950, 3002015815

GEN IV Material Gap Analyses Span Four Classes:

Austenitic Stainless Steels

316H SS	Extend BPV-III Div 5. Code properties to include time dependent behavior (Creep. Creep fatigue)						
	Development and demonstration of cladding (Mo rich) for protection						
316FR SS	Code qualification properties for ASME code Sec III Div 5 for 316FR including time dependent properties						
Type 15-15Ti SS	Verification of swelling resistance						
	Development of code properties for 15-15Ti material design						
Alumina Forming SS	Demonstration of adequate resistance to irradiation/swelling at expected high dpa						
	Development of processing and joining of alumina forming austenitic stainless steels						
D9 Stainless Steel	Development of for ASME Code Sec III Div 5 properties (including time dependent properties) for D9						
	Development of swelling behavior at long times under realistic conditions – demonstrate adequacy						

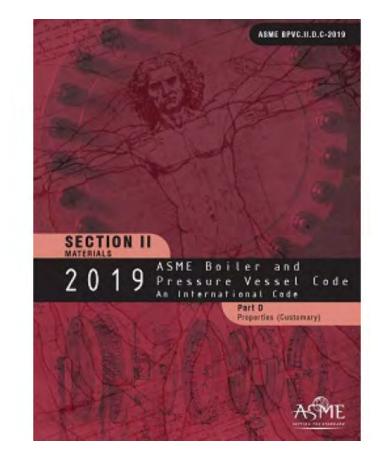
Ferritics-Martensitics and Low Alloy Steels

Ferritic-Martensitic9Cr	Demonstration of adequate resistance to swelling at high fluence range.							
	Time dependent properties for ASME Code Sec III Div 5.							
	Development of fabrication and effective joining methods							
Ferritic-Martensitic12Cr	Demonstration of adequate resistance to swelling at high fluence range.							
	Time dependent properties for ASME Code Sec III Div 5.							
	Development of fabrication and effective joining methods							
Ferritic Martensitic	Validation of commercial reliability – Properties sensitivity to heat treatment/local microstructures							
	Response to fabrication processes – welding practices							
LAS	Time dependent and fatigue properties for ASME code Sec III Div 5							

Nickel-Based Alloys

Hastelloy N	Demonstration of radiation tolerance of Hast N variants (Proper understanding of chemistry $ ightarrow$ microstructure $ ightarrow$
	properties
	Development of properties for ASME Code Sec III Div 5 certification
800H and 617	Summary Document of Properties

Addressing material data gaps supports more than one reactor design


EPRI AR Materials Development Roadmap

Listed BYAIL Color sublification properties for XMM cols Sec. III DV 5 for YMM. industry intergeneration trappet to YMM. industry intergeneration trappet to YMM. Color sublification properties for XMM cols Sec. III DV 5 for YMM. Color sublification properties for XMM cols Sec. III DV 5 for YMM. Color sublification properties for XMM cols Sec. III DV 5 for YMM. Color sublification trappet to YMM. Color sublification trap					-			-			
Listed BYAIL Color sublification properties for XMM cols Sec. III DV 5 for YMM. industry intergeneration trappet to YMM. industry intergeneration trappet to YMM. Color sublification properties for XMM cols Sec. III DV 5 for YMM. Color sublification properties for XMM cols Sec. III DV 5 for YMM. Color sublification properties for XMM cols Sec. III DV 5 for YMM. Color sublification trappet to YMM. Color sublification trap	Technical Topic	2020	2021	2022	2023	2024	2025	2026	2027	2028	2028
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Austentic Stainless Steels										
Algo besideAlgo besideCode qualification arrows the for AMM code set II by 5 for 15MInclude the dependent propertiesInclude the dependent properties		Extend BPV-III Div 5. Co	de properties to include								
3.16F Code qualification properties for ASME code Sec III DV 5 for 3PAT including time dependent properties Image: Code qualification properties for ASME code Sec III DV 5 for 3PAT including time dependent properties Image: Code qualification properties for ASME code Sec III DV 5 for 3PAT including time dependent properties Image: Code qualification properties for ASME code Sec III DV 5 for 3PAT including time dependent properties Image: Code qualification properties for ASME code Sec III DV 5 for 3PAT including time dependent properties Image: Code qualification properties for ASME code Sec III DV 5 for 7/M-5CC Image: Code qualification properties for ASME code Sec III DV 5 for 7/M-5CC Image: Code qualification properties for ASME code Sec III DV 5 for 7/M-5CC Image: Code qualification properties for ASME code Sec III DV 5 for 7/M-5CC Image: Code qualification properties for ASME code Sec III DV 5 for 7/M-5CC Image: Code qualification properties for ASME code Sec III DV 5 for 7/M-5CC Image: Code qualification properties for ASME code Sec III DV 5 for 7/M-5CC Image: Code qualification properties for ASME code Sec III DV 5 for 7/M-5CC Image: Code qualification properties for ASME code Sec III DV 5 for 7/M-5CC Image: Code qualification properties for ASME code Sec III DV 5 for 7/M-5CC Image: Code qualification properties for ASME code Sec III DV 5 for 7/M-5CC Image: Code qualification properties for ASME code Sec III DV 5 for 7/M-5CC Image: Code qualification properties for ASME code Sec III DV 5 for 7/M-5CC Image: Code qualification properties for ASME code Sec III DV 5 for 7/M-5CC Image: Code qualification properties for ASME code Sec III DV 5 for 7/M-5CC Image: Code qualification propertis for ASME code Sec III DV 5 for 7/M-5		time dependent beha	avior (creep and creep-								
116F Code quilification properties for AAME code Sec III Due S for 13P Image: Code quilification properties for AAME code Sec III Due S for 10P Image: Code quilification properties for AAME code Sec III Due S for 10P 0 5 Sunices Sec Image: Code quilification properties for AAME code Sec III Due S for 10P Image: Code quilification properties for AAME code Sec III Due S for 10P 0 5 Sunices Sec Image: Code quilification properties for AAME code Sec III Due S for 10P Image: Code quilification properties for AAME code Sec III Due S for 10P 0 5 Sunices Sec Image: Code quilification properties for AAME code Sec III Due S for 10P Image: Code quilification properties for AAME code Sec III Due S for 10P 0 5 Sunices Sec Image: Code quilification properties for AAME code Sec III Due S for 10P Image: Code quilification properties for AAME code Sec III Due S for 10P 0 5 Sunices Sec Image: Code quilification properties for AAME code Sec III Due S for 10P Image: Code quilification properties for AAME code Sec III Due S for 10P 1 Media Image: Code quilification properties for AAME code Sec III Due S for 10P Image: Code quilification properties for AAME code Sec III Due S for 10P 1 Media Image: Code quilification properties for AAME code Sec III Due S for 10P Image: Code quilification properties for AAME code Sec III Due S for 10P 1 Media Image: Code quilification properties for AAME code Sec III Due S for 10P Image: Code quilification properties for AAME code Sec III Due S for 10P 1 Media Image: Code quilific	316H	fat	igue)								
3167 Image: state in the image: sta				Code qualification pro	perties for ASME code Se	c III Div 5 for 316FR					
DS bainless See Image: See See See See See See See See See S	316FB										
Indexide register r	01011							Ī			
D9 Statistics Stee O Image: Steel in the steel in th											
erricic Marcanitic and walky Steels walky St				including time dependent properties							
series Alloy Seeds w Alloy Seeds by Alloy Alloy Seeds by Alloy Seeds by Alloy Seeds by Alloy Alloy Seeds by Alloy Alloy Seeds by Alloy	D9 Stainless Steel							Evaluate resistan	ce to irradiation/swelling a	t high dpa for D9 SS	
Low Alloy See Extend BV-III DV 5: Code properties to include time dependent behavior (resep and crease including time dependent behavior) (resep and crease including time dependent properties Code qualification properties for XSME code Sec III DV 5 for F/M-9Cr including time dependent properties Evaluate resistance to irradiation/xvelling at high dpa (9C and 12Cr) Evaluate resistance to irradiation/xvelling at high dpa (9C and 12Cr) Code qualification properties for XSME code Sec III DV 5 for F/M-9Cr including time dependent properties Evaluate resistance to irradiation/xvelling at high dpa (9C and 12Cr) Code qualification properties for XSME code Sec III DV 5 for F/M-12Cr including time dependent properties Proof-of-Pferforma of Vields Kasemble Summary Document for SOM, 37, 7005, NH Code qualification properties for XSME code Sec III DV 5 for Hantelloy N (or derivents) including time dependent properties Code qualification properties for XSME code Sec III DV 5 for FAITELOV of Vields Rooth, 617, Hastellov N Hastellov Code Code qualification properties for XSME code Sec III DV 5 for Hantellov N (or derivents) including time dependent properties Evaluate new Graphite materials & move into XSME Code Evaluate SC-SC Structures raphte and Ceramic Composite Gift N Reactor Development of Rooth Site State S	erritic-Martensitic and										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ow Alloy Steels										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Extend BPV-III Div 5. Co	de properties to include							
Low Alloy Steelfatuge)-Grade 22 & 508 PropertiesCode qualification properties for ASME code Set III by 5 for F/M-3CCode qualification properties for ASME code Set III by 5 for F/M-3CColumn 2 + B + B + B + B + B + B + B + B + B +				· ·							
F/M-SC Code qualification properties for ASME code Sc III Div 5 for F/M-9C including time dependent properties for ASME code Sc III Div 5 for F/M-9C including time dependent properties. Evaluate resistance to irradiation/swelling at high dpg (9Cr and 12Cr) F/M-SC Second Sc III Div 5 for F/M-12C Code qualification properties for ASME code Sc III Div 5 for F/M-12Cr Pool-of-Performanic Including time dependent properties. Pool-of-Performanic Including	Low Alloy Steel										
F/M-9cr Including time dependent properties Including time dependent properties <thincluding dependent="" properties<="" th="" time=""> <thincl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thincl<></thincluding>											
Example Evaluate resistance to irradiation/swelling at high dpa (9Cr and 12Cr) Proof-of-Performant of Welds ikkel-Based Alloys Assemble Summary Document for 800H, 617, Hastelloy N Assemble Summary Document for 800H, 617, Hastelloy N Support ASME Code Data for 617 and 800H Image: Control of Performant of Welds Image: Control of Welds Image											
F/M-12Cr Code qualification properties for ASME code Sec III Div 3 for F/M-12Cr Proof-of-Performanol of Welds ickel-Based Alloys Assemble Summary Document for 800H, 617, 7995S, and Support ASME Code Data for G12 and 800H Support ASME Code Data for G12 and 800H Image: Code qualification properties for ASME code Sec III Div 3 for F/M-12Cr Proof-of-Performanol of Welds 800H, 617, Hasteloy N Code qualification properties for ASME code Sec III Div 5 for Hastelloy N (or derivation should be dependent properties Image: Code qualification properties for ASME code Sec III Div 5 for Hastelloy N (or derivation should be dependent properties Image: Code qualification properties for ASME code Sec III Div 5 for Hastelloy N (or derivation should be dependent properties Image: Code qualification properties Image: Code qualification properties raphite and Ceramic Composite Evaluate UK experience Evaluate new Graphite materials & move into ASME code Evaluate Sic Sic Structures raphite and Ceramic Composite Evaluate UK experience Evaluate new Graphite materials & move into ASME code Evaluate Sic Sic Structures Evaluate Sic Sic Structures Development of Testing Approaches for GC Orrosion Behavior of Austentic Stainless and in Molten salt - Vendor Image: Corrosion Hastelloy N Image: Corrosion Austentic Stainless and in Molten salt - Vendor Image: Corrosion Austentic Stainless and in Molten salt - Vendor Image: Corrosion Behavior of Austentic Stainless and in Molten salt - Vendor Image: Corrosion	F/M-9Cr				includi	ng time dependent pro	perties				
F/M-12C (ckel-Based AlloysAssemble Summary Document for 800H, 617, 7085, and 617, 708										igh dpa (9Cr and 12Cr)	
ickel-Based Alloys Assemble Summary Document for S00H, 617, 7095S, and S00H, 617, Hastelloy N Support ASME Code Data for 617 and 800H Image: Control of Con							Code qualification pro	perties for ASME code S	Sec III Div 5 for F/M-12Cr		Proof-of-Performa
Assemble Summary Document for 800H, 617, 705S, and 800H, 617, 705S, and Corrosion Behavior of Hast N Variants in Molten salt (Ti program) Taphite and Ceramic Composite raphite and Ceramic Composite Evaluate UK experience Evaluate UK experience Evaluate new Graphite materials & move into ASME Code salt (Ti program) Evaluate new Graphite materials & move into ASME Code Evaluate resistance to irradiation/swelling at high dpa for Hastalloy N Corrosion Behavior of Hast N Variants in Molten salt (Ti program) Evaluate new Graphite materials & move into ASME Code Evaluate resistance to irradiation/Swelling at high dpa for Hastalloy N Corrosion Behavior of Hast N Variants in Molten salt (Ti program) Evaluate resistance to irradiation/Swelling at high dpa for Hastalloy N Austentic Stainless Steels Development of Evaluate UK Reactor Development & VTR Test Vehicle Programs Programs Testing for materials Selection and (Corrosion + Mechanical effects) Programs Progra	F/M-12Cr	•					inclue	ling time dependent pro	operties		of Welds
Document for 800H, 617, 7995S, and 617, 7995S,	ickel-Based Alloys										
Bodument for 800H, 617, 709SS, and 617, 709SS, 70, 700S, 70, 700S, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70		Assemble Summary									
617, 7095S, and Hastaloy N Support ASME Code Data for 617 and 800H Image: Composite of Composite of Code Qualification properties of ASME code Sec III Div 5 for Hastelloy N (or derivants) including time dependent properties Image: Composite of Composite of Composite of Composite of Hast N variants in Molten salt (Ti poram) Evaluate resistance to irradiation/swelling thigh dpa for Hastelloy N (or derivants) including time dependent properties Image: Composite of Composite of Hast N variants in Molten salt (Ti poram) raphite and Ceramic Composite of Evaluate U substrate To properties Evaluate To Salt (Ti poram) Evaluate resistance to irradiation/swelling thigh dpa for Hastelloy N salt (Ti poram) Image: Composite of Composi											
800H, 617, Hastelloy N Hastalloy N Code qualification properties or ASME code set III Div 5 for Hastelloy N Image: Code qualification properties or ASME code set III Div 5 for Hastelloy N Image: Code qualification properties or ASME code set III Div 5 for Hastelloy N Image: Code qualification properties or ASME code set III Div 5 for Hastelloy N Image: Code qualification properties or ASME code set III Div 5 for Hastelloy N Image: Code qualification properties or ASME code set III Div 5 for Hastelloy N Image: Code qualification properties or ASME code set III Div 5 for Hastelloy N Image: Code qualification properties or ASME code set III Div 5 for Hastelloy N Image: Code qualification properties or ASME code set III Div 5 for Hastelloy N Image: Code qualification properties or ASME code set III Div ASME code set IIIII Div ASME code set IIII Div ASME code set IIIII Div A			Support A	Support ASME Code Data for 617 and 800H							
Code qualification properties for ASME code Sec III Div 5 for Hastelloy N (or derivants) including time dependent properties Corrosion Behavior of Hast N Variants in Molten salt (Ti program) raphite and Ceramic Composite Evaluate UK experience Evaluate new Graphite materials & move into ASME code Austentic Stainless Steeks Corrosion Behavior of Austentic Stainless and in Molten salt Properties Operelopment of Testing Approaches for GEN IV Reactor Environments Programs Programs Testing for materials for GEN IV reactors Development and demonstration of Ladding (Mo rich on LAS and 316H Molty Cladding on 316H SS) Development and demonstration of Hastelloy N Cladding on 316H SS	800H. 617. Hastellov N										
indices indicestion in	· · · ·	,	Code qualification prop	erties for ASME code Sec	III Div 5 for Hastellov N						
Corrosion Behavior of Hast N Variants in Molten salt (Ti program) Evaluate resistance to irradiation/swelling at high dpa for Hastalloy N raphite and Ceramic Composite Evaluate UK experience Evaluate new Graphite meterials & move into ASME Code Evaluate SC-SC structures raphite and Ceramic Composite Evaluate UK experience Evaluate new Graphite meterials & move into ASME Code Evaluate SC-SC structures raphite and Ceramic Composite Corrosion Behavior of Austenitic Stainless and in Molten salt - Vendor needed data ? Prioritize resistance of Austenitic SS in Lead Environment Evaluate SC-SC structures Development of Testing Approaches for GER IV Reactor Development & VTR Test Vehicle Follow on Materials Selection and (Corrosion + Mechanical effects) Prioritize resistance of Austenitic SS in Lead Environment IaddingStructural & Graphite Oevelopment and demonstration of cladding (M orich on LAS and 316H SS) for protection against Molten Salt Salt Image: Salt Selection and S											
add ing_Structural & Graphite Moly Cladding on 316H ZS Bevelopment and Geramic Composite Evaluate UV experience Evaluate new Graphite materials & move into ASME Code Evaluate UV experience Evaluate new Graphite materials & move into ASME Code Corrosion Properties Corrosion Behavior of Austenitic Stainless and in Molten salt - Vendor needed data ? Development of Testing Approaches for GEN IV Reactor Development & VTR Test Vehicle Follow on Materials Selection and (Corrosion + Mechanical effects) GEN IV Reactor Environments Bevelopment and demostration of cladding (Mo rich on LAS and 316H SS) for protection against Molten Salt Moly Cladding on 316H SS Development and Geruit Composite Bevelopment and Geruit Composite Structural & Graphite Development and demostration of Hastelloy N cladding on 316H SS Noby Cladding on 316H SS Development and Geruit Composite Structural & Graphite Development and Geruit Composite						Evelvete verieterent	e ine disting (suching st	alah dua fau Hastallau N			
raphite and Ceramic Composite Evaluate UK experience Evaluate new Graphite materials & move into ASME Code Evaluate SiC-SiC structures orrosion Properties Corrosion Behavior of Austenitic Stainless and in Molten salt - Vendor needed data ? Prioritize resistance of Austenitic SS in Lead Environment Image: Corrosion Behavior of Austenitic SS in Lead Environment Development of Testing Approaches for GEN IV Reactor Environments Gen IV Reactor Development & VTR Test Vehicle Programs Follow on Materials Selection and (Corrosion + Mechanical effects) Testing for materials for GEN IV reactors Image: Corrosion Properties Image: Corrosion Properties IaddingStructural & Graphite Development and demonstration of cladding (Mo rich on LAS and 316H SS) for protection against Molten Salt Image: Corrosion Properties Image: Corrosion Properties Hastelloy Cladding on 316H SS Development and demonstration of Hastelloy N Cladding on 316H SS Image: Corrosion Properties Image: Corrosion Properties					Evaluate resistance to irradiation/swelling at r			light upa for Hastalloy N			
Orrosion Properties Corrosion Behavior of Austenitic Stainless and in Molten salt - Vendor needed data ? Prioritize resistance of Austenitic SS in Lead Environment Development of Testing Approaches for GEN IV Reactor Environments Gen IV Reactor Development & VTR Test Vehicle Programs Follow on Materials Selection and (Corrosion + Mechanical effects) Testing for materials for GEN IV reactors Image: Corrosion + Mechanical effects) IaddingStructural & Graphite Image: Corrosion against Molten Salt Image: Corrosion against Molten Salt Image: Corrosion + Mechanical effects) Moly Cladding on 316H SS Image: Corrosion against Molten Salt Image: Corrosion against Molten Salt Image: Corrosion + Mechanical effects) Image: Corrosion + Mechanical effects) Hastelloy Cladding on 316H SS Image: Corrosion against Molten Salt Image: Corrosion + Mechanical effects) Image: Corrosion + Mechanical effects) Image: Corrosion + Mechanical effects) Hastelloy Cladding on 316H SS Image: Corrosion against Molten Salt Image: Corrosion + Mechanical effects) Image: Corrosion + Mechanical			Sait (11 p	rografii)							
Orrosion Properties Corrosion Behavior of Austenitic Stainless and in Molten salt - Vendor needed data ? Prioritize resistance of Austenitic SS in Lead Environment Development of Testing Approaches for GEN IV Reactor Environments Gen IV Reactor Development & VTR Test Vehicle Programs Follow on Materials Selection and (Corrosion + Mechanical effects) Testing for materials for GEN IV reactors Image: Corrosion + Mechanical effects) IaddingStructural & Graphite Image: Corrosion against Molten Salt Image: Corrosion against Molten Salt Image: Corrosion + Mechanical effects) Moly Cladding on 316H SS Image: Corrosion against Molten Salt Image: Corrosion against Molten Salt Image: Corrosion + Mechanical effects) Image: Corrosion + Mechanical effects) Hastelloy Cladding on 316H SS Image: Corrosion against Molten Salt Image: Corrosion + Mechanical effects) Image: Corrosion + Mechanical effects) Image: Corrosion + Mechanical effects) Hastelloy Cladding on 316H SS Image: Corrosion against Molten Salt Image: Corrosion + Mechanical effects) Image: Corrosion + Mechanical											
Austentic Stainless Steels Corrosion Behavior of Laddings and in Molten salt - Vendor Proceeded data ? Development of Testing Approaches for GEN IV Reactor Development & VTR Test Vehicle Programs Follow on Laterials Selection and (Corrosion + Mechanical effects) Testing for materials for GEN IV reactors laddingStructural & Graphite Development and demostration of cladding (Nortich on LAS and 316H SS) for protection against Molten Salt Hastelloy Cladding on 316H SS Development and demostration of Hastelloy N Cladding on 316H SS		Evaluate U	K experience	Evalu	ate new Graphite materi	als & move into ASME	Code			Evaluate SiC	-SiC structures
Austentic Stainless Steels Gen IV Reactor Development & VTR Test Vehicle Program Follow attrials Selection and Corrosion + Mechanical Effects) Testing for materials for GEN IV reactors Gen IV Reactor Development & VTR Test Vehicle Program Follow attrials Selection and Corrosion + Mechanical Effects) Testing for materials for GEN IV reactors Gen IV Reactor Development and emplain and emplaint and e	orrosion Properties									<u> </u>	
Development of Testing Approaches for GEN IV Reactor Environments Gen IV Reactor Development & VTR Test Vehicle Programs Follow on Materials Selection and (Corrosion + Mechanical effects) Testing for materials for GEN IV reactors Selection and (Corrosion + Mechanical effects) Iadding-Structural & Graphite Image: Selection and demospherits Image: Selection and and Selection against Molter Salt Image: Selection against Molter Selection Againster Selection Against Molter Selection Against Molter			Corrosion Behavior of	Austenitic Stainless and in	n Molten salt - Vendor						
GEN IV Reactor Environments Programs Testing for materials for GEN IV reactors Image: Content of Con							Pri	oritize resistance of Aus	tenitic SS in Lead Environn	nent	
laddingStructural & Graphite Operation			ment & VTR Test Vehicle Follow on Materials Selection and			•	al effects)				
Development and demonstration of cladding (Mo rich on LAS and 316H SS) for protection against Molten Salt SS for protection against Molten Salt Hastelloy Cladding on 316H SS Development and demonstration of Hastelloy N Cladding on 316H SS SS for protection against Molten Salt	GEN IV Reactor Environments	Prog			for GEN IV reactors						
Moly Cladding SS) for protection against Molten Salt Image: Cladding on 316H SS Image: Cladding on 316H SS <th< td=""><td>laddingStructural & Graphite</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	laddingStructural & Graphite										
Hastelloy Cladding on 316H SS Development and demonstration of Hastelloy N Cladding on 316H SS		Development and dem	nonstration of cladding (M	o rich on LAS and 316H							
	Moly Cladding										
	Hostollov Claddina an 24 CU CC		Douolooperateration	onstration of light light	L Cladding on 21CU CC						
	Hastelloy Cladding on 316H SS		Development and dem	Ionstration of Hastelloy N	Clauding on 316H SS						
	Exploratory Alloys						Driggitized Investigation	c of Evoloratory Allows	and Advanced Dresseries	in various onvironmente	

What Is Required To Bring These Technologies Forward For SMR, Micro-Reactor, or AR Applications?

- Code Data Packages (mechanical, microstructural, welding data)
- ASME or RCC-M Code acceptance
- Regulatory Acceptance
- Corrosion Testing
- Irradiation Studies
- Clearly separate pressure retaining applications from structural applications

Beyond Code Requirements

- Develop the additional, critical data and understanding required for informed fabrication and design of AR components and materials beyond the base data provided by the ASME Code.
- Minimize the risk of localized cracking and to develop design approaches for the damage tolerant structures necessary for long life, higher reliability, and improved safety in high temperature configurations.
 - The addition of "beyond code" information will provide confidence that robust and durable structures can be realistically developed for advanced reactors.
- The data developed will be necessary to support an effective supply chain for advanced materials.

17

A Call to Action for Advanced Materials to Enable Commercialization

- Cooperation/coordination between materials development tracks is needed:
 - Disparate development underway on similar alloys by industry
 - Too much for one organization to undertake
- Most effective use of resources calls for materials development and validation activities to address multiple reactor types where possible
 - e.g. High temperature properties)
- Alignment of work activities
 - Materials properties/ASME code data packages/ASME code cases (<10 alloys)
 - Irradiation effects and long term properties (4-5 alloys)
 - Effects of specific environments on properties (4-5 alloys)
- Potential development of new materials
 - Materials development
 - Robustness of processing

Advanced Manufacturing

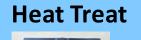
19

EPRI Advanced Manufacturing Research Focus Area

Identify, develop, gualify and implement more economical manufacturing technologies that enable: Higher Quality Components | Reduced Lead Times | Alternative Supply Chains | Cost Competitiveness

Additive Manufacturing

316L LPBF Code Case & Data Package (submitted to ASME August 2020) Additive Manuf. Roadmap for Nuclear Applications (Nov. 2020) **DED-AM Component Demonstration**


www.epri.com

Advanced Manufacturing **Demonstration Project**

EB Welding



Advanced Welding Techniques

Adaptive Feedback Welding

ANT + WRTC

Modular In-Chamber EBW

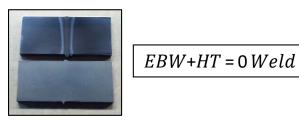
Candidate AMT Processes for Nuclear Components

- Powder Metallurgy-Hot Isostatic Pressing: PM-HIP
 - ~4 ft (1.2m) diameter
 - Larger HIP allowing ~ 10ft (3.05m) diameter, est. completion 2023/24
- Directed Energy Deposition AM: DED-AM
 - < 500 lb. (227kg) max.</p>
- Powder Bed Fusion AM: L-PBF or EB-PBF
 - ~75 lb. (34kg) max.
- Advanced Cladding Processes:
 - e.g., diode laser cladding, hot wire laser welding, friction stir additive, cold spray & laser assisted cold spray, PM-HIP
 - Further development/qualification needed
- Electron Beam Welding: EBW
 - For large components (RPVs, SGs, pressurizers, fusion components, etc.)
- Other AMTs of interest not included with the roadmap:
 - Advanced welding technologies, machining techniques, surfacing technologies
 - Concrete & rebar and modular construction technologies

Advanced Manufacturing Demonstration Project

Manufacture Major Components of a 2/3-scale SMR Reactor Pressure Vessel Team: EPRI, Nuclear-AMRC, DOE, NuScale Power

- Eliminate Long Lead Forgings via PM-HIP
 - Near-net shaped components
 - Eliminates 1000's of hours of machining



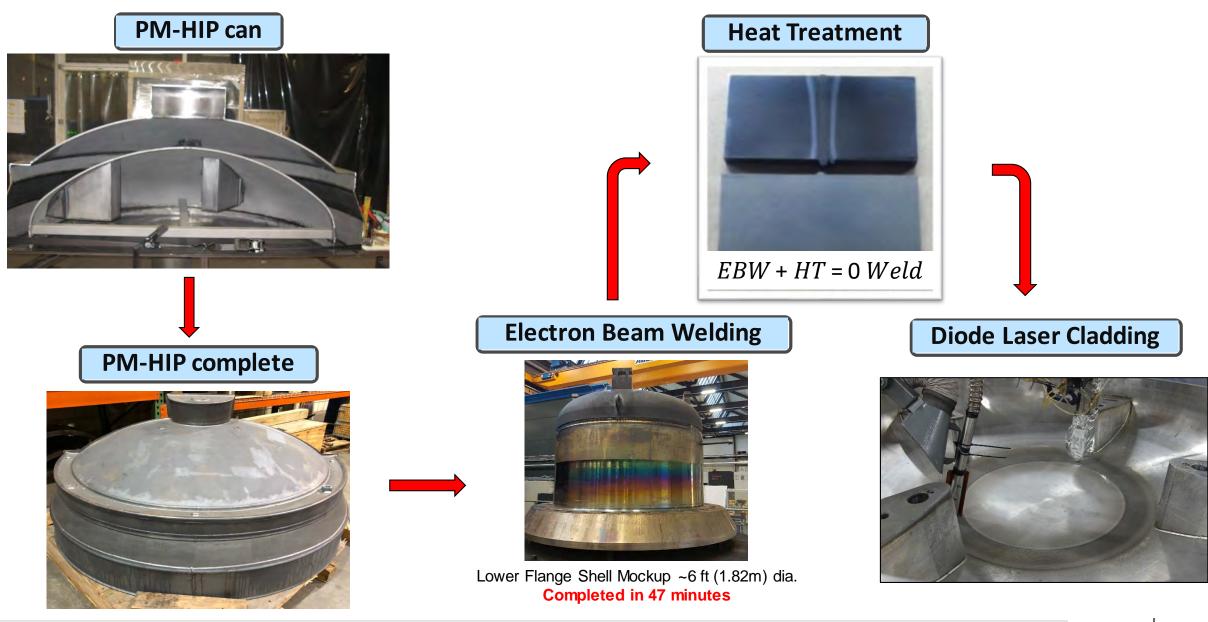
<u>3002019335 – Phase 1 (Year 2) Progress Report (direct link)</u> And related Technical Report: Demonstration of PM-HIP - 3002010500

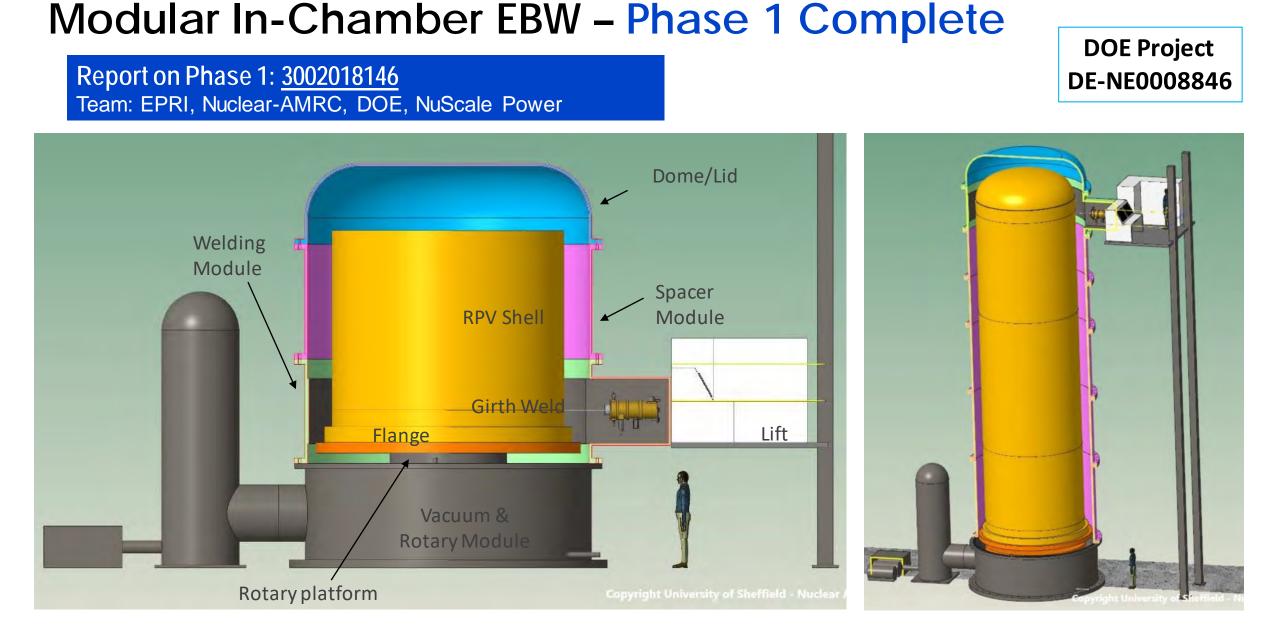
- Electron Beam Welding
 - What Once Took Weeks,
 We Can Now Do In Hours

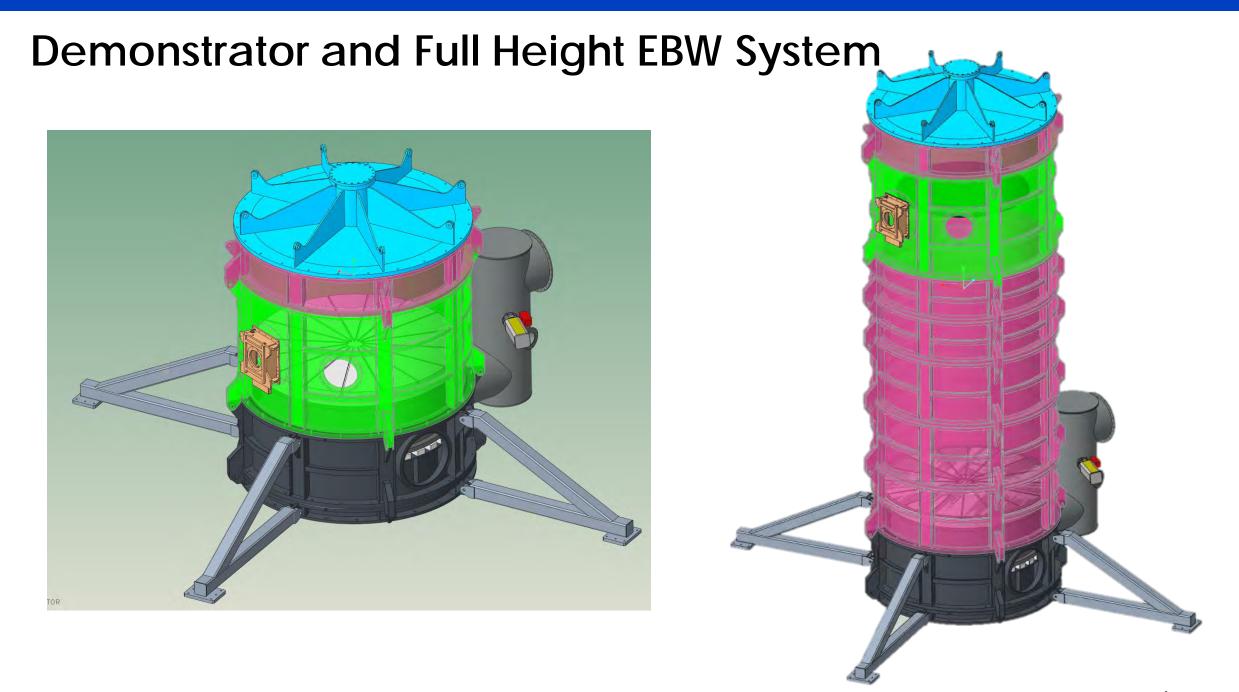
WELD COMPLETED IN ~20 MINUTES

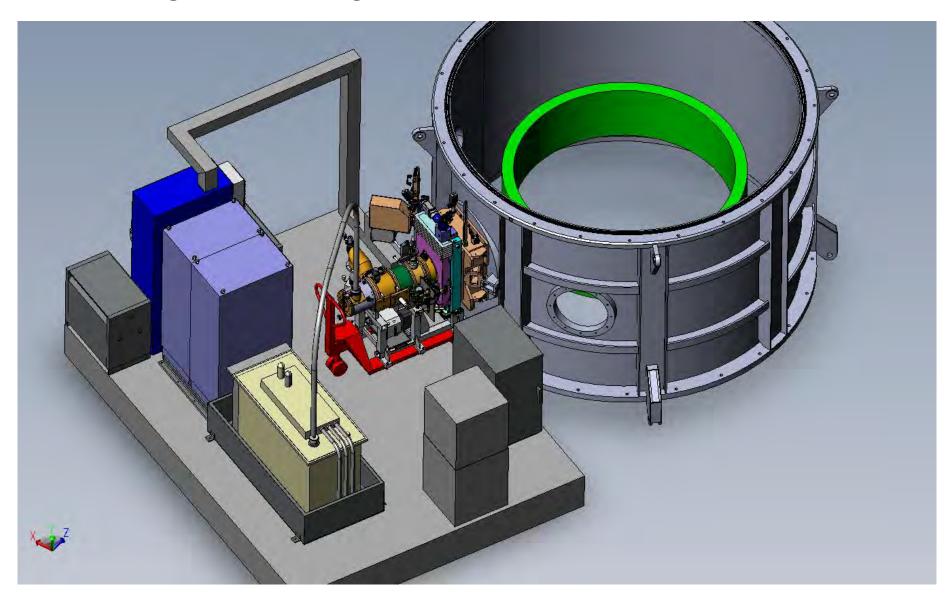
 Reduces cladding material by > 50%

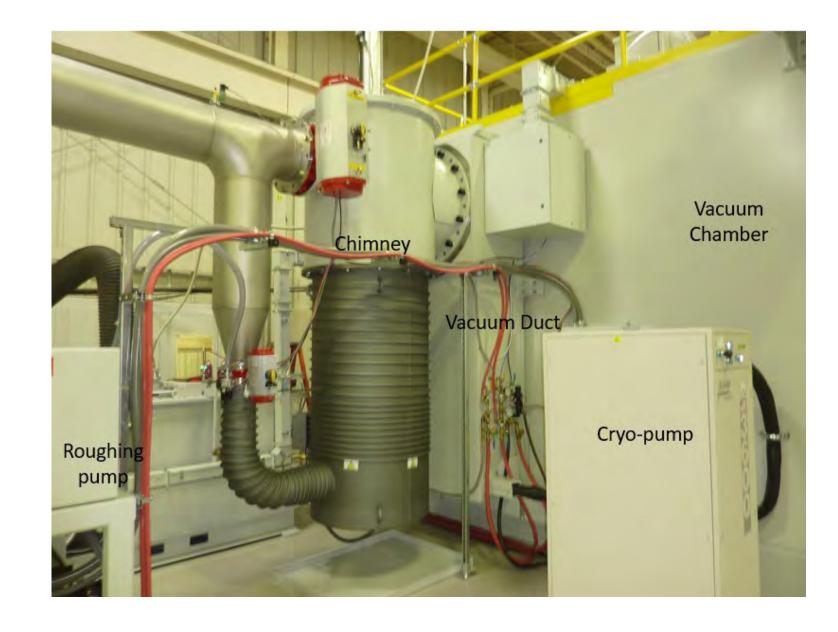
NuScale Nonproprietary ©2017 NuScale Power, LLC



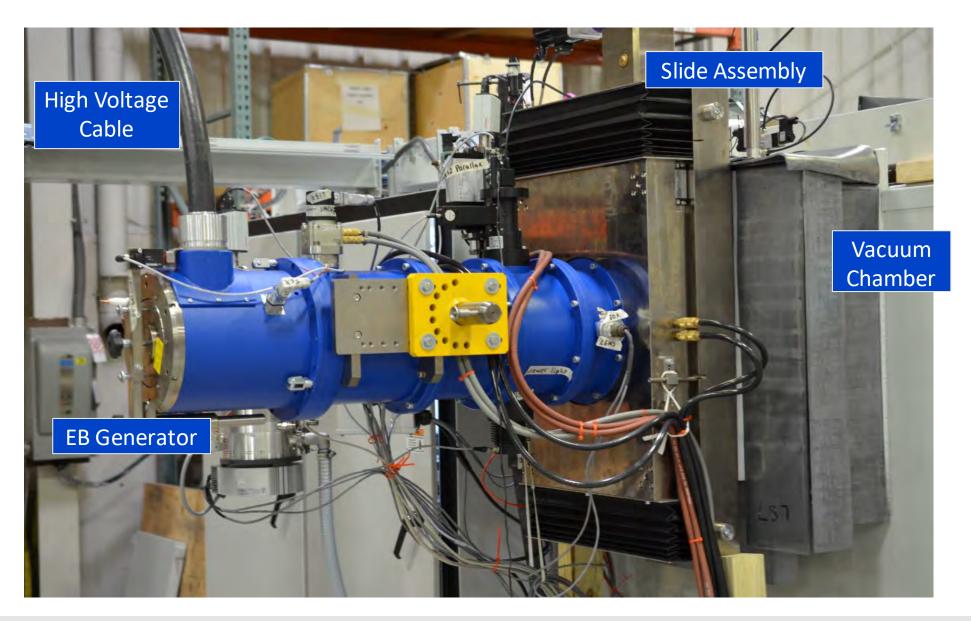



Advanced Manufacturing and Fabrication Program (TI, DOE) 2 of 2

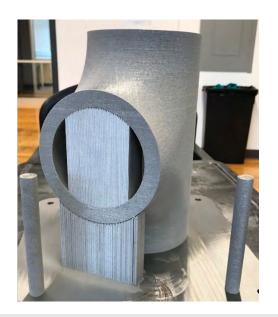



Platform & System Layout

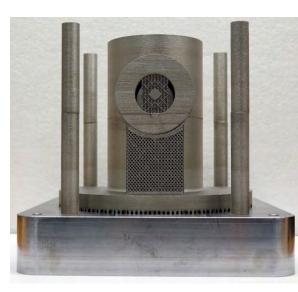
Mechanical pump package

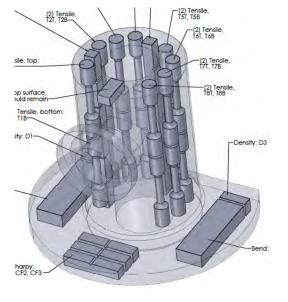

EBW Equipment Assembled

EB Generator and Slide attached to the vacuum chamber

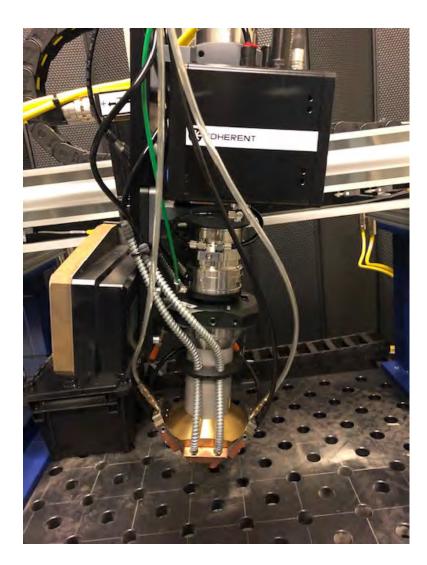

Additive Manufacturing Qualification (DOE) – Laser Powder Bed Fusion

Objectives

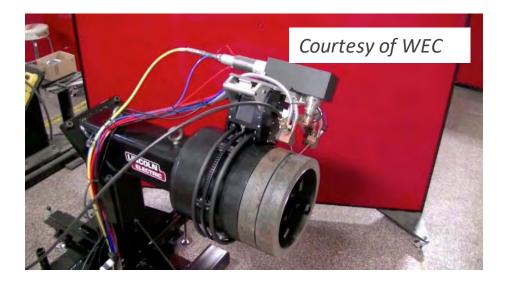

- Develop and demonstrate innovative qualification strategy/approach for additively manufactured nuclear components
 - Incorporate Integrated Computational Materials Engineering (ICME) and in-situ process monitoring
- ASME Code Case for 316L Additively Manufactured (to be submitted in late 2019)

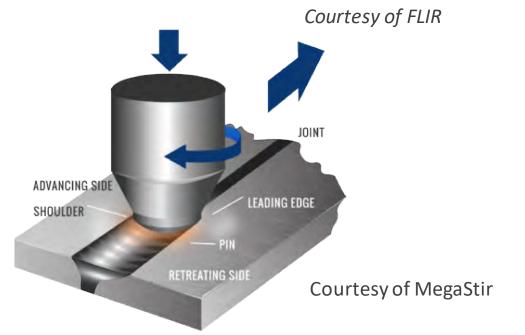

Scope

- 3 component geometries, built by 5 manufacturers (Rolls Royce, Westinghouse, Auburn, Oerlikon, UTK-ORNL), on 3 types of machines, from 5 heats/lots of material
- Mechanical & microstructural testing is in process



EPRI Diode Laser Cladding Equipment





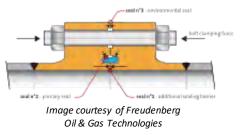
Advanced Welding & Joining Techniques

- Electron Beam Welding
- Adaptive Feedback Welding
- Friction Stir Welding / Ultrasonic Welding
- Hot-Wire Laser Welding
- Real-time Flaw Recognition

Advanced Machining & Metrology

- Cryogenic machining
- Ultrasonic machining
- Metrology

Courtesy of 5ME



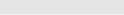
Advanced Manufacturing & Robotics

Remote maintenance/replacement \rightarrow

Mechanical connections

Embedded Sensors...Advanced Manufacturing

Courtesy of Fusion for Energy Copyright ITER Organization



www.epri.com

← Diode Laser Cladding

Adaptive Feedback Welding \rightarrow

Summary

- EPRI Collaborative Model
- Cross-Sector Technologies
 - EPRI Lab Capabilities
- Tools in the Toolbox
 - Advanced Materials Development
 - Collaboration is key
 - − Advanced Manufacturing Methods: R&D → Demonstration
 - Additive Manufacturing (3D Printing)
 - Powder Metallurgy-Hot Isostatic Pressing (PM-HIP)
 - Advanced Cladding Techniques
 - Advanced Welding & Joining Techniques
 - Advanced Machining & Metrology
 - Surfacing Technologies
 - Concrete and Rebar
 - Modular Construction Methods

Together...Shaping the Future of Electricity

