

High Heat Flux Testing of PFCs for SPARC

Presented at the INFUSE Workshop 2020

TK Gray¹, D Brunner², T. Henderson², A Kuang³, ML Reinke², RL Romesberg⁴, GS Showers⁴, DE Wolfe⁴, DL Youchison¹, and D Yuryev²

¹Oak Ridge National Laboratory

 ^{2}CFS

³PSFC/MIT

⁴Applied Research Laboratory, Penn State University

High Heat Flux (HHF) Programmatic Goals

- SPARC is a short-pulse (10 s), high power density tokamak to demonstrate net fusion energy
- Baseline divertor operation is to sweep the strike point over inertially cooled divertor (>100 MW/m² divertor surface heat flux)
- INFUSE project aims to
 - 1. Inform the divertor plasma-facing material choice (form of carbon or tungsten tile)
 - 2. Demonstrate that the plasma-facing component can survive under SPARC-relevant cyclic heat loading

Tasks	2020				2021
	Q1	Q2	Q3	Q4	Q1
Test calibration for target heat fluxes, temperatures, materials					
Material assessment					
Tile assembly / mockup test					

SPAR

Desired e-beam scenario

- Mimic desired strike point sweep envisioned for SPARC
- Defined as a "sweep-cycle" at a given ${\sf I}_{\sf beam}$ for 10 sec total
 - 10 strike-point sweeps on target
 - Hoped to vary speed of sweep
 - Default of 0.5 m/s \rightarrow 0.1 m/s
 - Targets allowed to cool between sweep cycles (< 200 C)
- Beam spends most of time on the dump (0.8 sec)
- Chose C-Mod W lamellae for preliminary round of HHF testing
 - Heat flux handling ability of W is risky

Measured T_{surf} similar to expected from simulations

- Peak q" = 110 MW/m²
 - I_{beam} = 2000 mA
 - Semi-infinite estimation
 - Drops for successive sweeps
- Preliminary q" $_{estimate}$ = 130 MW/m² assuming f_{abs} = 0.3
 - 34 kW e-beam (17 kV @ 2 A)
 - $f_{abs} = 0.2 0.25$ if 110 MW/m² estimate is accurate

Minimal damage to W tiles

- Tiles were C-MOD era PFCs
 - Surface re-ground and polished
 - Dominate surface features from that process
- Overall, no cracking observed down to 20 micron scale
- SEM from melt region shows possible surface melting and cracking
 - 10 micron scale

) SPARC

Summary of Results and Next Steps

- Sciaky facility achieved:
 - e-beam spot size ~ 10 mm DIA at high I_{beam} (> 1250 mA)
 - E-beam sweep speed of 0.2 m/s
 - T_{surf} comparable to expected SPARC divertor temperatures
 - Controllable heat fluxes of $50 100 \text{ MW/m}^2$
- With sufficient beam sweeping, W melting can be minimized
- Evidence of small, crack network at 10 micron scale after exposure to 100 MW/m² heat flux
- Next steps:
 - Data analysis from exposure testing, confirm replication of SPARC-relevant fluxes.
 - Complete detailed plan for PFC mockup tests
 - Build PFC mock-ups of CDR-level tile design and perform tests

Impacts on SPARC

- HHF tests provide critical information to guide design and selection of SPARC plasma-facing materials
- CFS now has access to facility to test prototypes at SPARC-relevant levels. This complements theoretical analysis and projection based on publications or lower heat flux tests
- CFS and ORNL can now move on to HHF Testing of integrated PFC module
- Aim is to have results to inform PDR, scheduled for July 2021

