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Reactor Digital Twin Powered by Fast, Accurate, NN-based COTSIM
§ 1D →1.5D transport code
§ 2D MHD Equilibrium

− Prescribed
− Analytical (Fixed Bdry)
− Numerical (Free/Fixed Bdry)

§ Hybrid Finite Differences
− Variable space/time steps

§ Modular configuration
− Custom physics complexity
− Accuracy vs. Speed tradeoff

§ Matlab/Simulink-based
− Control-design friendly
− Closed-loop capable
− Optimizer wrappable

§ Transport Engine: MMM
§ Fast (full shot →sec/min)

− Enables iterative design
§ After model reduction

− Real-time
− Faster-than-real-time

§ Core + Edge + Events

Transport Models
Anomalous transport

CGYRO →	MMM →	MMMnet
Coppi-Tang, Bohm-gyroBohm

Neoclassical transport
Chang Hinton

Prescribed equilibrium

Magnetic Equilibrium

Fixed boundary equilibrium

Free boundary equilibrium

COTSIM INPUTS
Geometry (Device), Model Parameters, IC’s, FF Actuators, FB Targets 

Tokamaks:
DIII-D, NSTX-U, KSTAR, ITER, …

Plasma Profile Prediction
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Model-based Equilibrium + Transport Optimal Scenario Planning
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● Goal: Use COTSIM to optimize plasma equilibrium/transport during tokamak discharge
● The Cost Function 𝑱 mathematically represents the desired (user-defined) control objectives

[1] X. Song et al., “Model-based Scenario Optimization in Tokamaks by Integrating Free-boundary Equilibrium and Fast Transport Solvers,” EPS-CPP, Bordeaux, France, 2023.
[2] S. Morosohk et al., “Machine Learning-Enhanced Model-Based Scenario Optimization for DIII-D,” Nuclear Fusion 64 (2024) 056018 (11pp).
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Problem Statement: min
!
𝐽 𝑦, 𝑢, 𝑦"#$%&" s.t.

𝑥̇ = 𝑓 𝑥, 𝑢 , 𝑦 = 𝑔 𝑥 , 𝑐 𝑥, 𝑢 < 0

- 𝑓(𝑥, 𝑢), 𝑔(𝑥): State Dynamics
- 𝑐 𝑥, 𝑢 : Input/State Constraints
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Gyrokinetic Simulations: Role of Instabilities in Turbulent Transport

● Zonal flows reduce the amplitude of KBM-driven fluctuations by breaking large eddies into 
smaller structures and shortening the radial correlation length [1]. 

● Scaling of electron thermal transport with electron-ion collisionality reveals a transition to  a 
low collisionality regime, where enhanced zonal flow and zonal fields play a key role in 
suppressing MTM turbulence [2].

● Zonal flows act as a self-generated regulator of turbulence, mitigating KBM and MTM 
transport  and improving confinement in NSTX-U-like plasmas.

[1] T. Singh et al., “Global Gyrokinetic Simulations of Kinetic Ballooning Mode in NSTX-U Plasmas,” Nuclear Fusion 65, 106039 (2025). 
[2] T. Singh et al., “Nonlinear Gyrokinetic Simulations of Microtearing Modes in NSTX and NSTX-U-like Plasma,” to be submitted (2025).

o Transport in NSTXU driven by plasma turbulence from KBMs and MTMs instabilities limits plasma 
performance by constraining achievable pressure profiles and enhancing electron thermal transport.

o Nonlinear gyrokinetic simulations reveal the critical role of zonal flow in regulating the turbulent and 
transport associated with Kinetic Ballooning Modes (KBMs) and Micro Tearing Modes (MTMs). 

KBM regulation by zonal flow MTM regulation by zonal flow

Stability Limit Avoidance by Reference Governors and Safe RL

[1] S. T. Paruchuri et al. “Density regulation with disruption avoidance in next-generation tokamaks using a safe reinforcement learning-based controller,” FED (2025).
[2] S. T. Paruchuri and E. Schuster. “Reference Governor for Plasma Scalar Control to Prevent Stability Limit Breaches in Tokamaks,” IAEA FEC 2025 à Nuclear Fusion.

● Reinforcement Learning (RL) offers a new 
path to designing controllers to regulate 
the plasma while avoiding stability limits

● Safe RL integrates safety constraints 
without the need of stability-limit model

● Application example: RL agent trained 
using DDPG (Deep Deterministic Policy 
Gradient) in [1] to control DT density 
while avoiding reaching Greenwald Limit 
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Safe RL: Safety Penalty modifies Reward  
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● During plasma operation, disturbances can lead to violation of stability limits. Reference 
governors (RG) modify pre-optimized plasma control targets to ensure safety.

● Plasma controllers track the modified targets, ensuring stability limit adherence.
● A generic RG framework has been developed [2] to handle multiple control objectives. 
● The RG takes reference and stability 

signals (model-based or data-driven)
● The RG aggregates references and 

compares them with stability limits
● On risk of violation, the RG adjust 

the most critical signal and filter it 
to remove high-frequency noise

● The filtered signal is split into safe 
references for each controller

Core-Edge Integration for Joint Core-Kinetic and Divertor Control

[1] V. Graber et al., “Control-Oriented Core-SOL-Divertor Model to Address Integrated Burn/Divertor Control Challenges in ITER,” FED 192 (2023) 113635.
[2] V. Graber et al., “Assessment of Burning-Plasma Operational Space in ITER by Using a Control-Oriented SOLPS Parameterized Core-Edge Model,” IAEA-FEC 2023.
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The D-T pellet injector 
saturates at 111 Pa m3/s.

Saturation lines are 
shown for when the 
tritium fraction is at:
- 90% (solid line)
- 80% (dash-dot line)
- 70% (dotted line)

The seven black 
isolines indicate the 
fusion power in MW.

The auxiliary power 
saturates at 110 MW.

The 100%D pellet injector 
saturates at 120 Pa m3/s.

Inside of the green region 
all of the operational 
constraints are satisfied.The L-H power threshold is 

exceeded such that the 
plasma is in H-mode.

The gas fueling system  
saturates at 400 Pa m3/s 
(solid line). The dash-dot 
and dotted lines show 
where the gas fueling 
rate exceeds 300 and 
200 Pa m3/s, 
respectively. 

The peak heat load on 
the divertor target 
exceeds the safety 
threshold of 10 MW/m2.

ITER

✦ Safe divertor heat load à primary obstacle towards accessing 
regimes with higher fusion power output 

✦ Tritium fraction drops à ITER operable space shrinks

✦ Normalized neutral pressure (𝜇) ↑ (detached à attached) à ITER 
operable space shrinks (lower fusion power output)

✦ Attached divertor: Gas injection rate (brown) limits access to high-
fusion regimes before divertor heat load (red)

● Core-edge coupling: Integrated burn/divertor control
⁃ SOL conditions à Wall recycling & impurity pollution
⁃ Core Fusion power à Power across separatrix on divertor
⁃ High target heat loads 𝒒𝒑𝒆𝒂𝒌 > 𝟏𝟎	𝑴𝑾/𝒎𝟐  à Melting
⁃ Two modeling paths: COBALT-TPM [2], COBALT-SOLPS [3] 

● COTSIM-TPM & COTSIM-SOLPS under development

Divertor-safe Nonlinear Burn Control by Core-Edge Integration

[1] V. Graber, E. Schuster, “One-dimensional Simulations of Nonlinear Burn Control in ITER," Fusion Engineering and Design 221 (2025) 115362.
[2] V. Graber and E. Schuster, “Divertor-safe nonlinear burn control based on a SOLPS parameterized core-edge model for ITER," Nuclear Fusion (2024).
[3] C. Klepper et al. "Feasibility of fusion plasma burn control via real-time, sub-divertor neutral gas isotopic and compositional analysis," Nuclear Fusion 65 (2025).
[4] V. Graber et al., “Burn Control in ITER by Maximization of Ion Cyclotron Power Absorption Through Regulation of Helium-3 Concentration,” IAEA-FEC 2025 à PPCF. 

Core-plasma kinetic (Burn) control à Critical to ITER/FPP
⁃ Highly nonlinear dynamics and coupling with other controllers
⁃ Control objective is zero-dimensional (0D): 𝑷𝒇, 𝑸, 𝑮, 𝜸,⋯
⁃ Approach: 0D nonlinear controller tested in 1D simulations [1]
⁃ OD Control-Oriented Burning plAsma simuLaTor (COBALT) code
✦ Multi-temp (ion, electron), multi-species (D, T, 𝜶, impurity)

Core-edge integrated models are key enablers:
⁃ Assess divertor limits on ITER operational space
✦ Plasma OPerational CONtour (POPCON) plots
⁃ Design reference governors for safe operation [2]
✦ Online optimizer à Reference to controller
✦ Regimes of high fusion power + divertor safety
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Bridging fundamental physics modeling 
with AI-empowered, model-based 

controls for reactor-ready operation

Disruption-Free, Machine-Safe, High-Performance Reactor Control 
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● Predict, Sustain, and Control Burning Plasmas
q Model + Data (AI/ML) à Reactor-grade Control

● Goal: Design of Controller + Observer + Actuator Manager 
but also real-time setting of operating point or scenario 𝒓
q Tradeoff between performance and MHD stability 

within controllability and safety boundaries through 
Reference Governor + Boundary/Event Predictor

●  Observer + Actuator Manager decouple Controller from 
Actuators + Diagnostics à Robust Fault-tolerant Control

Performance

MHD Stability

Controllability
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Surrogate Models: Fast+Accurate Prediction in Control Applications
● Control applications demand models:
⁃ Fast à Off–line applications
✦ Closed-loop simulations
✦Model-based scenario optimization

⁃ Very fast à Real-time applications
✦ Feeback control
✦ Real-time optimization
✦ Estimation & Forecasting

● Machine Learning (ML) models:
⁃ Fast + Accurate + Broadly Applicable

[1] K. Shabbir et al., “MMMnet: A Neural Network Surrogate for Real-Time Transport Prediction Based on the Updated Multi-Mode Model,” Plasma 8, no. 3: 32, 2025.
[2] Z. Wang et al, “Neural-network-based Free-boundary Equilibrium (FBE) Solver to Enable Fast Scenario Simulations,” IEEE Transactions on Plasma Science, 2024. 
[3] Z. Wang et al., “Neural Network Model of Neutral Beam Injection on EAST to Enable Fast Transport Simulations,” Fusion Engineering and Design 191 (2023) 113514. 
[4] Z. Wang et al., “NUBEAM Surrogate Models Based on MLP, CNN and Parallel CNN-LSTM Neural Network Architectures ,” IAEA-FEC, London, UK, 2023. 

MMM Surrogate Model [1] FBE Solver Surrogate Model [2]

NUBEAMnet-1 NUBEAMnet-2 NUBEAMnet-3 Physics Informed Neural Network (PINN) [2] embeds Grad-
Shafranov equation into learning ensuring physics consistency

Physics-Based
Model

NN Surrogate
Model

Neural Network (NN)
Training

NUBEAM Surrogates [3], [4]: NUBEAMnet-1: MLP ,NUBEAMnet-2: CNN, NUBEAMnet-3: CNN+LSTM 
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Advanced Scenario (Profile) Control: MPC + RL + Moving Actuators

[1] Z. Wang et al., “Safety Factor Profile Regulation via Self-triggered Model Predictive Control in the EAST Tokamak,” ACC, Toronto, Canada, 2024.
[2] B. Leard et al., “Hybrid MPC for safety factor profile and stored energy regulation while incorporating NBI constraints,” Nuclear Fusion 64 (2024) 086052 (15pp).
[3] S.T. Paruchuri et al., “Model Predictive Current Profile Control in Tokamaks by Exploiting Spatially Moving ECCD,” Fusion Engineering & Design 192 (2023) 113796. 
[4] Z. Wang et al., “Pellet Injection-based Model Predictive Control of the Density Profile in Tokamaks by Leveraging Deep Reinforcement Learning,” IEEE SOFE, 2025.
[5] Z. Wang et al., “Safety Factor Profile Control in EAST via Reinforcement-Learning-based Model Predictive Control,” IEEE CCTA, San Diego, CA, USA, 2025.
[6] S.T. Paruchuri et al., “Nonlinear control of the minimum q in tokamaks by optimal allocation of spatially moving ECCD,” Fusion Engineering  & Design 207 (2024) 114612 . 
[7] S.T. Paruchuri, “Nonlinear Control of Safety Factor Gradient Using Spatially Variable Electron Cyclotron Current Drives,” Fusion Engineering & Design 192 (2023) 113914. 

● Location of local 𝒒-profile properties can change over time
⁃ Minimum 𝒒 or gradient of 𝒒 at prescribed rational surface
⁃ Locations can drift to region of low control authority
⁃ Moving actuators can improve controllability à Steerable ECCD 

Local Current-Profile Control by Spatially Moving Actuators
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DIII-D Profile Control by Real-time Optimization (MPC) + Learning (RL)

● FF optimal actuator trajectory is 
re-optimized in real time (FB)

● Conventional, Self-triggered [1], 
hybrid [2] MPC schemes with 
fixed and moving actuators [3]

● Model Predictive Control (MPC) 
has been augmented [4, 5] by 
Reinforcement Learning (RL) to 
increase performance + speed 

● Moving actuator can increase size 
of reachable (feasible) space

● Control of minimum 𝒒 can deter or 
delay onset of instability [1]

● Control of local 𝒒 gradient or slope 
around evolving 𝒒	rational surface 
can also avoid instability [2]

Control Integration by Nonlinear Actuator Sharing Algorithms (ASAs)

[1] S. Morosohk et al., “Simultaneous control of electron temperature and safety factor profiles in DIII-D using model-based optimal control techniques,” PPCF (2025).
[2] S. T. Paruchuri et al., “Static actuator-sharing algorithm for concurrent control of multiple plasma properties,” PPCF 67.1 (2024): 015005.
[3] S. T. Paruchuri et al., “Dynamic Actuator Allocation via Reinforcement Learning for Concurrent Plasma Control Objectives,” IEEE TPS 52.9 (2024): 4140-4146.
[4] A. Pajares et al., “Integrated control of individual plasma scalars with simultaneous neoclassical tearing-mode suppression,” Nuclear Fusion 62 (2022) 036018 (22pp).

● Reactor-grade PCS must control multiple properties
⁃ Controllers generate individual input commands 𝝂𝟏, 𝝂𝟐…,	
⁃ Actuators require physical actuator requests 𝑷𝟏, 𝑷𝟐, …. 
⁃ ASAs convert 𝝂𝒊	to 𝑷𝒋 𝒊, 𝒋	 ∈ 	𝒁%  by real-time optimization

● Static ASAs [2]: 𝝂𝒊 −𝑷𝒋	relation → algebraic equations 
⁃ Based on solving a quadratic programming problem

● Dynamic ASAs [3]: 𝝂𝒊 −𝑷𝒋	relation → differential equations 
⁃ Based on solving a minimax optimization problem
⁃ Online reinforcement learning can solve allocation problem

● Optimization-based ASA tested in DIII-D (leveraging ONFR)

When multiple control objectives are 
not integrated in single algorithm [1], 

actuator sharing strategies must 
arbitrate competition for actuators 
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Plasma State Estimation From Limited Number of Noisy Diagnostics
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[1] S. Morosohk and E. Schuster, “Real-time Estimation of the Electron Temperature Profile in DIII-D by Leveraging NN Surrogate Models," CPP 2023, e202200153.
[2] C. Xu, Y. Ou, E. Schuster, “Transport Parameter Estimations of Plasma Transport Dynamics Using the Extended Kalman Filter,” IEEE TPS, vol. 38, no. 3, March 2010.

● Neural observers provide 
alternative path to state 
estimation & forecasting

● Observers can also be 
designed for sensor, 
actuator, plant fault 
detection & isolation, as 
well as for model 
parameter estimation [2]

DIII-D

● Real-time plasma-state estimation is challenging due to 
noise and reduced number of diagnostics in reactors.

● Observer filters measurement “noise” not consistent 
with known physics (model à Physics-based COTSIM).

● Challenge is to design gain 𝑳	to make >𝒙 → 𝒙 (good 
estimation). 𝑳 regulates tradeoff between model 
prediction & measurement. COTSIM + DIAGNOSTIC 
MODEL makes possible the design of “any” observer.
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Only 3 Thomson Scattering channels MMMnet+NUBEAMnet à PCS

Physics Based Anomalous Transport Modeling by MMM

[1] T. Rafiq et al., ETG Driven Transport Model for Tokamak Plasmas, Physics of Plasmas 29, 092503 (2022). 
[2] T. Rafiq et al., MTM and Electron Transport in Low/High Collisionality NSTX Discharges, Physics of Plasmas 28, 022504 (2021).
[3] T. Rafiq et al., Predictive Modeling of NSTX Discharges with the Updated MMM, Nuclear Fusion 64, 076024 (2024) .
[4] T. Rafiq et al., Validating the MMM’s Ability to Reproduce Diverse Tokamak Scenarios, Plasma 6, 435 (2023). 

Instabilities / Modes
ITG / ETG / TEM / MTM / 

DRIBM / KBM / 
Peeling / High-n MHD modes

Verification
Verified against gyrokinetic codes 

Predictions grounded in 
fundamental physics [1,2]

Validation
Validated across multiple tokamaks RMS 

deviation within experimental 
uncertainty [3,4]

ETG Electron Thermal Transport
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Multi-Mode Model (MMM): Integrates drift-wave and MHD-like modes for predictive tokamak simulations, 
predicting electron & ion temperature, electron & impurity density, and toroidal & poloidal rotation profiles

Comparison: MTM-MMM vs MTM-CGYRO

● MMMv9.1.2 is more suitable for time-critical applications: 
q Control-oriented modeling
q Uncertainty quantification 
q Scenario optimization in tokamak plasmas

● >15× faster between v9.0.10 → v9.1.2 (ifort vs gfortran)
● 5ms to calculate electron/ion-scale modes and 6 diffusivities (51 radial pts)
● Consistent reproduction of profile shapes across NSTX, DIII-D, EAST, KSTAR
● Suitable for integrated frameworks (e.g., COTSIM, TRANSP, IMAS, OMFIT)

Work supported by U.S. Department of Energy, Office of 
Science, Office of Fusion Energy Sciences (DE-SC0010661, 

DE-SC0010537, DE-SC0021385, DE-SC0013977)


