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The development of specialized liquid metal (LM) magnetohydrodynamics (MHD) codes has been a major area of research in fusion programs worldwide. However, these codes are generally not scalable for complex 3D geometries with multi-physics loads

typical of fusion applications. Modifying an existing multi-physics computational framework like ANSYS could revolutionize LM blanket development by enabling the modeling of diverse physical phenomena—such as heat transfer, mass transfer, stress
analysis, and loading conditions like buoyancy and transient electromagnetic forces—while accelerating the evaluation of design concepts and experimental mockups. This approach leverages ANSYS’s advanced numerical methods for meshes and solvers to

tackle larger computational problems with enhanced accuracy.

In this contribution, PPPL used a customized version of the general-purpose computational fluid dynamics (CFD) code, ANSYS CFX, to advanced LM blanket concepts, characterized by a wide range of electrical conductivities and external magnetic field

loads. Codes were customized to achieve robust convergence and validated solutions for MHD flows at high external magnetic fields characterized by Hartmann (Ha) numbers of the order of many thousands. Special modification will be used for flows with
MHD turbulence, which occur in regions of lower Ha and higher Reynolds (Re) numbers. Analytical and experimental results for flows in circular pipes across a wide range of external magnetic fields and wall conductance levels were used to validate the MHD
analysis method. The validated CFD MHD code isused to simulate the performance of Kyoto Fusioneering’s (KF) silicon carbide composite (SiCf/SiC) blanket concepts. This simulation will account for variable external magnetic fields, neutronic volumetric
heating, and surface heating on plasma-facing shielding components. A mock-up design with necessary instrumentation will be tested by KF at UNITY-1, the blanket component test facility, to experimentally validate the models applied in the analysis.

The new system combines physics and engineering codes.

The results of the development of a virtual prototyping system for

numerical analysis of liquid metal blankets for future fusion devices are
reported.

of the blankets:

build.

analysis performed using customized version of ANSYS CFX, and

include effects of irradiation induced swelling.

The new system has a two-step workflow for rapid design and optimization
Step1: 0D, 1D, and 2D codes will be used to optimize initial design

Step 2: 3D geometry of the power plant is finalized, and blanket design
is created, using the optimized equilibrium shape of the plasma.
geometry together with 3D external loads are used in the detailed 3D
Computational Fluid Dynamics (CFD), Magneto Hydrodynamics (MHD)
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* Automatic Meshing Procedure

Inflation on fluid domain is required for
proper resolution of boundary layers
Box mode can be used to select all
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Virtual Prototyping System Allowed analysis of complex 3D geometry

Magnetic Induction MHD model showed significant effect of induced field
on flow and heat transfer in the blanket with SiCf/SiC walls

Further parametric studies will allow to accumulate a database for
surrogate model training
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