

Design of proton diagnostics operating at high repetition rate to advance proton fast ignition **FOCUSED**

Our Team

Dr. Xavier VAISSEAU |Senior scientist Focused Energy Inc.

Dr. Valeria OSPINA BOHORQUEZ | Scientist Focused Energy Inc.

Dr. Sophia MALKO |Staff Scientist

Dr. Kirill LEZHNIN | Postdoctoral researcher

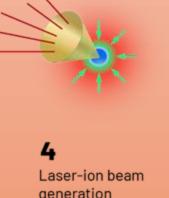
Jesse GRIFF-MCMAHON |PhD student Princeton University

Ryan NEDBAILO |PhD Student Universityy of Texas at Austin

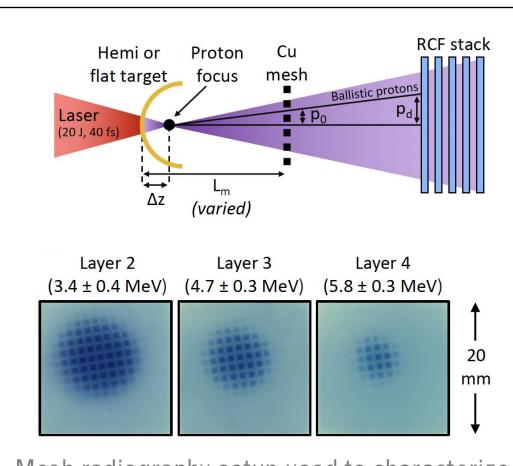
Dr. Krish BHUTWALA | Postdoctoral researcher

Prof. Will FOX | Associate Professor University of Maryland

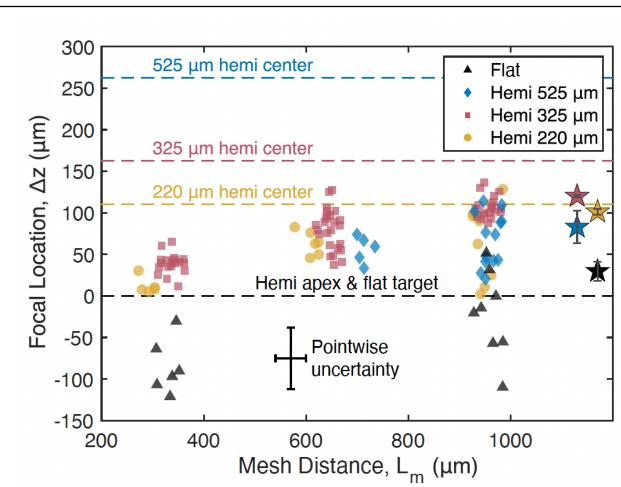
Problem Statement


Laser-driven proton fast ignition (PFI) is a promising path toward high-gain inertial fusion energy because it separates fuel compression and heating, enabling higher gain, relaxed symmetry requirements, and more robust implosions. Focused Energy Inc. considers PFI as one of the approaches for commercializing the fusion energy.

PFI ignition requires a ~ 20 kJ, 4–8 MeV proton beam focused to 15–20 μ m within 10–20 ps in the fuel assembly


 New-gen fusion facilities are coming online to demonstrate proton fast ignition and optimize performance at scale

- To enable these studies, novel diagnostics are required that can:
 - Measure angularly-resolved proton spectra (3–50 MeV)
 - Resolve 2D proton profiles with <5 μm spatial precision across energy bins
 - Operate at shot-every-few-minutes repetition rates
 - Survive multi-kJ, picosecond-class laser EMP environments


Our team is developing diagnostic systems that meet these requirements through an integrated approach combining high-rep experimental validation and numerical modeling.

2D proton imaging for studying proton focusing dynamics

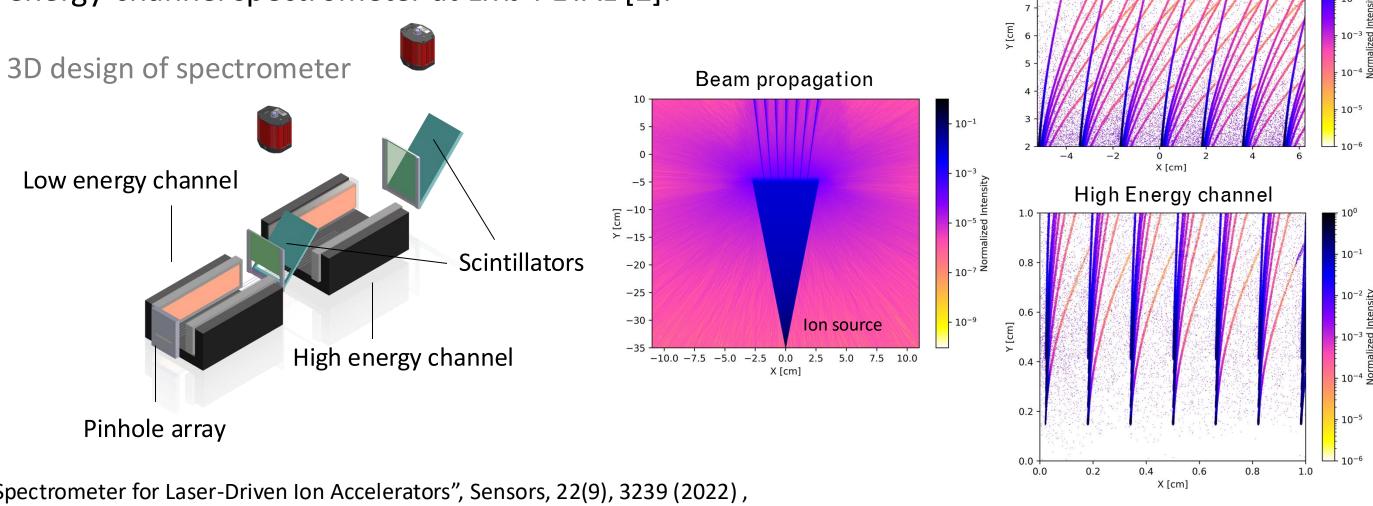
- We performed the first high-shot-rate parametric study of laser-driven proton focusing from hemispherical targets at LaserNetUS CSU ALEPH laser facility [1]
- Goals:
 - Understand how target geometry $(\Psi = D_{hemi}/D_{laser})$ influences focusing quality
 - Assess requirements for high repetition rate 2D proton imaging detector

Mesh radiography setup used to characterize proton focusing.

Virtual focal location Δz as the mesh distance L_m is varied. RCF layers 2, 3, and 4 are shown. The stars on the right side are the inferred physical focus from fitting hyperbolic trajectories to the data with error bars indicating the fit uncertainty

Findings:

- Smaller hemispheres ($\Psi \approx 6$) focus protons near the geometric center
- Larger hemispheres ($\Psi > 10$) show degraded focusing, similar to flat targets
- Physical focal location shifts inside the hemisphere as diameter increases
- \rightarrow best focusing at Ψ ≈ 6
- Beam pointing more sensitive for small hemispheres due to laser pointing jitter
- Large dataset enabled reliable statistical trends, unlike prior <5-shot studies


[1] J. Griff-McMahon, X. Vaisseau, W. Fox, K. Lezhnin, K. Bhutwala, R. Nedbailo, V. Ospina-Bohorquez, T. Karpowski, P. K. Patel, and S. Malko, "Geometric scaling of laser-driven proton focusing from hemispherical foils" submitted to PRR (Oct. 2025)

Low energy channel

Angularly-Resolved Multi-Channel Ion Spectrometer Concept

An extensive design study was performed using FLUKA Monte-Carlo simulations to develop an ion spectrometer architecture. The design draws inspiration from two approaches: multi-pinhole Thomson parabola systems [1] and the SEPAGE multi-energy-channel spectrometer at LMJ-PETAL [2].

- Our concept combines angular and spectral resolution, enabling: ±5° angular acceptance and 3 – 80 **MeV** proton energy range.
- To support high-repetition-rate operation, the design incorporates scintillator-based detection for fast signal readout and radiation tolerance

- [1] Salgado-López et al, "Angular-Resolved Thomson Parabola Spectrometer for Laser-Driven Ion Accelerators", Sensors, 22(9), 3239 (2022),
- [2] Lantuéjoul I. et al "SEPAGE: a proton-ion-electron spectrometer for LMJ-PETAL", Proc. SPIE 10763, Radiation Detectors in Medicine, Industry, and National Security XIX, 107630X (2018)
- The research described in this paper was funded under the INFUSE program a DOE SC FES public private partnership under CRADA No. 2725 between Princeton Plasma Physics Laboratory and Focused Energy Inc. company under its U.S. Department of Energy Contract No. DE-AC02-09CH11466.
- The experimental work was supported by the U.S. Department of Energy's (DOE) Office of Science (SC) Fusion Energy Sciences (FES) program under DE-SC0021246: the LaserNetUS initiative at the Advanced Beam Laboratory.
- The PPPL team's experimental activities, numerical modeling and calculations supporting the experimental results were conducted under (LDRD) Program at Princeton Plasma Physics Laboratory, a national laboratory operated by Princeton University for the U.S. Department of Energy under Prime Contract No. DE-AC02-09CH11466