

Office of Science

APS-DPP, Mini-Conference: Public-Private Partnerships for Fusion Energy III October 19, 2022

Nuclear Energy

Idaho National Laboratory Fusion Nuclear Science R&D Capabilities

Masashi Shimada, and <u>Chase N. Taylor</u> Fusion Safety Program

INL/MIS-21-65450

890 square-miles

https://factsheets.inl.gov/SitePages/Home.aspx

52 nuclear reactors

https://factsheets.inl.gov/SitePages/Home.aspx

IDAHO NATIONAL LABORATORY

Experimental & Computational SitePages/Home.aspx capabilities

https://factsheets.inl.gov/SitePages/Home.aspx

IDAHO NATIONAL LABORATORY

890 square-miles, 52 nuclear reactors, and INL capabilities

• Idaho National Laboratory (INL) is the nation's lead laboratory for nuclear energy R&D.

- INL is the (geographically) largest national laboratory with 890 square-miles DOE Idaho site.
- DOE Idaho site is the birthplace of nuclear energy, and 52 nuclear reactors were built in DOE Idaho site.
- The world's first usable electricity from nuclear energy was generated in EBR-I in 1951.

Industry support

5

- Through Gateway for Accelerated Innovation in Nuclear (GAIN), DOE is making the state-of-the-art and continuously improving RD&D infrastructure available to nuclear industrial community for <u>faster</u> and <u>cost-</u> <u>effective</u> development of innovative nuclear energy technologies toward commercialization.
 - Experimental capabilities with primary emphasis on nuclear and radiological facilities, examples are:
 - Advanced test reactor (ATR), the world's premier nuclear test reactor and the only U.S. research reactor capable of providing large-volume, high-flux thermal neutron irradiation in a prototype environment.
 - Hot Fuel Examination Facility (HFEF), one of the largest hot cell in the U.S. for post-irradiation examination of highly radioactive nuclear fuels and materials.
 - Irradiated Materials Characterization Laboratory (IMCL), Haz. Cat. 2 nuclear facility for microstructural, thermal, and mechanical characterization of irradiated nuclear fuels and materials.
 - High Temperature Test Laboratory (HTTL) for development of advanced sensor and instrumentation, etc.
 - Computational capabilities along with state-of-the-art modeling and simulation tools (e.g. MOOSE, BISON etc.)
 - Information and data through knowledge and validation center
 - Land use and site information for demonstration facilities

Tritium and beryllium

Microporous - Management

Selective M

Tritium and beryllium

• Safety and Tritium Applied Research (STAR) facility is DOE less than Hazard Category 3 radiological facility

- To advance fusion nuclear sciences (especially, tritium retention and permeation in fusion materials, and tritium extraction from plasma exhaust and liquid breeding materials) for DOE FES and INFUSE
- Is conveniently located close to the Advanced Test Reactor, the largest fission test reactor in the U.S.
- Unique capabilities at STAR facility includes:
 - Tritium handling (maximum allowable tritium inventory to 1.6 gram ~ 15,390 Ci)
 - Radioactive material handling (typically < 1 mSv/hr = 100 mrem/hr at 30 cm)
 - Use of inert-gas gloveboxes and/or ventilated enclosures for the containment of tritium, beryllium, & lead
 - Tritium: Fusion fuel for deuterium-tritium (D-T) fusion system
 - Beryllium: Molten salt (e.g. FLiBe) breeding materials and Be as PFC
 - Lead: Liquid (e.g. PbLi) breeding materials (e.g. PbLi)
- What we can provide at STAR facility includes:
 - Tritium retention in fusion material (plasma facing and blanket breeding materials)
 - Tritium transport properties (diffusivity, solubility, and permeability) in fusion materials (solid and liquid)
 - Tritium testing of T-compatible pumps, tritium extraction system, and novel plasma exhaust technologies
 - Diagnostics and sensor testing with tritium and toxic materials (e.g. FLiBe and PbLi)
 - Bulk defect and surface chemistry characterization in fusion materials

7

Summary

• INL is excited to discuss the collaboration opportunities in all the following general topic areas:

- Enabling technologies (e.g. T testing of T-compatible pumps and T extraction system)
- Materials science (e.g. Bulk defect and surface chemistry characterization in irradiated materials)
- Diagnostic development (e.g. sensor testing for PbLi and FLiBe and under extreme irradiation conditions)
- Modeling and simulation (e.g. Tritium safety analysis with MELCOR-Fusion, MELCOR-TMAP, and MOOSE-TMAP)
- Unique fusion experimental capabilities (e.g. D-T testing)

• Please check the following links for more information:

- INL fact sheets: https://factsheets.inl.gov/SitePages/Home.aspx
- INL fusion program: https://fusionsafety.inl.gov/SitePages/Home.aspx

• INL Point of Contact for INFUSE

- Masashi Shimada, 208-533-4472, Masashi.Shimada@inl.gov

Supporting slides

9

Capabilities and objectives of STAR R&D

- Hazard category
 - STAR facility is DOE less than Hazard Category 3 nuclear facility
- Unique capabilities

10

- Tritium handling
 - Total tritium inventory restricted to less than 1.6 gram (15,390 Ci)
 - Current tritium inventory is 3000 (± 50) Ci as of July 2021
 - Use of a inert-gas glovebox and/or ventilated enclosure for T containment
- Radioactive material handling
 - Dose rate limit: Radiological work permits set < 1 mSv/hr (100 mrem/hr) at 30 cm
 - Dose limit: 7 mSv (700 mrem) as INL administrative limit for annual dose
- Chemically toxic (e.g. Be, FLiBe) and liquid materials (e.g. PbLi)
 - Use of a inert-gas glovebox for Be containment
- Objective is to investigate experimental safety R&D for DOE SC Fusion Energy Sciences and Nuclear Energy
 - 1. In-vessel tritium source term:
 - Tritium retention in plasma facing components (PFCs)
 - 2. Ex-vessel tritium release term:
 - Tritium permeation in PFCs and structural materials
 - Tritium absorption, desorption, and extraction from blanket materials
 - Tritium permeation in fission structural materials
 - **3.** In-vessel dust source term:
 - Evaluation of dust production rate and explosivity determination
- NOTE: STAR facility is temporally shutdown from April Oct. 2021 for HVAC upgrade

TPE - Tritium Plasma Experiment

- TPE is a unique linear plasma device in four elements:
 - Tritium plasma (< 500 Ci per discharge),
 - Divertor-relevant high-flux plasma (>10²² m⁻²s⁻¹) ,
 - Moderately radioactive (< 1 mSr/hr @ 30 cm) materials
 - Mixed (D-T-He) plasma
- Utilizes two containments other than its SS vacuum vessel
 - Ventilated enclosure (as a high contamination area/HCA boundary)
 - Ventilated room (as a contamination area/CA boundary for T)
- Installation of new plasma source
 - Design based on UCSD PISCES-A source
 - Increased plasma performance and availability
 - Minimized impurities (e.g. C)
 - Impurity level in plasma decreased significantly
- Test material size
 - 6mm 25 mm OD discs
 - 0.25 2.0 mm in thickness
- Post-exposure examination capabilities
 - D/He//T retention measurement by thermal desorption spectroscopy
 - D/He depth profile by glow-discharge optical emission spectroscopy
 - Surface chemistry analysis by X-ray photoelectron spectroscopy and scanning Auger spectroscopy
 - D depth profile by nuclear reaction analysis (collaboration w/ SNL-NM)

Sample holder w/ W plasma shield

PE vacuum chambe

PE ventilated enclosu

TGAP - Tritium gas absorption and permeation

- TGAP is a unique tritium permeation experiment in five elements:
 - Tritium (T₂) gas (< 25 Ci per campaign)
 - Independent control of H₂ and T₂ partial pressures
 - Low tritium partial pressure ($10^{-12} < p_{T2}$ [Pa] < 10^{0})
 - Moderately radioactive (< 1 mSr/hr @ 30 cm) materials handling
 - Liquid (e.g., PbLi, FLiBe) and disc shaped metal specimens
- Utilizes a Ventilated Enclosure for tritium containment
- Utilizes solid Au O-rings or Inconel C-rings for sealing
- Tritium permeability was measured in RAFM and polycrystalline W.

Test section for T solubility in PbLi

20mm OD specimen and Au wire O-rings (left) and C-rings

SGAP - Static gas absorption and permeation

- SGAP is a unique combined absorption and permeation experiment:
 - Hydrogen and deuterium gas pressure (10³ < p_{D2}[Pa] < 10⁵)
 - High temperature (up to 950 °C)
 - Lliquid or ceramic breeder materials (PbLi, FLiBe, Li₂ZrO₃, etc.) and PFC/structural material (W, RAFM steels, etc.)
 - Moderately radioactive (< 1 mSr/hr @ 30 cm) materials handling
- Utilizes a Laboratory Hood for hydrogen/deuterium containment

Static Gas Absorption Permeation (SGAP) system

IDAHO NATIONAL LABORATORY

Gas-phase H/D/T permeation systems at INL

Static Gas Absorption Permeation

- is a combined H/D absorption & permeation system
 - Hydrogen and deuterium partial pressure
 - $10^{3} < p_{\Omega_{2}}[Pa] < 10^{5}$ (where Q=H or D)
 - **High temperature**
 - Absorption: up to 950 C (1223K)
 - Permeation: up to 900 C (1173K)
 - Vertically standing furnace capable of testing
 - Liquid (e.g. PbLi and FLiBe)
 - Disc specimen from 6 mm to 25 mm OD
 - Moderately radioactive materials handling
 - Dose rate limit< 1 mSr/hr @ 30 cm

Absorption section

14

Static Gas Absorption Permeation (SGAP) system Permeation section APS-DPP, Mini-Conference: Public-Private Partnerships for Fusion Energy III, October 19, 2022

Tritium Gas Absorption Permeation

- is a combined T absorption & permeation system •
 - Use of tritium gas (HT, T₂)
 - Tritium limit: 25 Ci per campaign
 - Low tritium partial pressure
 - $10^{-12} < p_{T2}$ [Pa] < 10^{0}
 - Independent control of H₂ & T₂ partial pressure
 - Enables accurate measurement of T permeability
 - **High temperature**
 - Absorption & Permeation: up to 700 C (973K)
 - Vertically standing furnace capable of testing
 - Liquid (e.g. PbLi and FLiBe)
 - Disc specimen from 6 mm to 25 mm OD
 - Moderately radioactive materials handling
 - Dose rate limit< 1 mSr/hr @ 30 cm

Tritium Gas Absorption Permeation (TGAP)

Surface/bulk characterization for tritium-exposed and low activation materials

S at SIAK Online Dec 2016	Glow discharge optical emission spectrometry (GD-OES) Horiba Profiler 2	 Specifications Depth profile 10-100s μm in minutes. Analyze 10s of elements simultaneously. Nanometer depth resolution. Directly measure H and D. Impact Deuterium depth profiles >> 10 μm. 		<u>20 nm</u>
Online Jan	Annihilation Positron Annihilation Coincidence Doppler Broadening (CDB-PAS) Lifetime (PALS)	 Specifications Only technique sensitive to monovacancies. Measure defect size. Measure relative defect concentration. Ultra-low background. Impact Correlate neutron damage to retention. 	Focused ion beam (FIB) FEI Quanta 3D FEG	 Specifications High-resolution, high-vacuum dual- beam SEM/FIB for 2-D and 3-D material characterization and analysis. Equipped with EDS, EBSD and STEM detector. Impact Cross-sectional analysis & TEM lamella
Online July 2017	X-ray photoelectron spectroscopy (XPS) Perkin-Elmer PHI 5100	 Specifications Quantify surface chemistry (0.1 at %). Sensitive to top 1-10 nm. High resolution X-ray monochromator. Impact Correlate surface condition with tritium permeation. Specifications	Scanning electron microscope (SEM) JEOL JSM-6610LV	 Specifications Images material surfaces ranging from micrometer to nanometer scale under high-vacuum and low-vacuum environment. Equipped with EDS, EBSD and CL. Impact High resolution images
Online July 2017	Scanning Auger microprobe (SAM) Perkin-Elmer PHI 660	 Elemental surface composition of materials (Auger emission spectroscopy, AES). Scanning mode enables microscopy (scanning electron microscopy, SEM). Impact Correlate morphology with chemical state. 	Scanning transmission electron microscope (STEM)	 Angli resolution images, Crystal orientation Specifications Images materials structurally and chemically down to atomic scale. Equipped with HAADF, EDS, EELS, EFTEM, Electron
Online Sept	Digital microscope Keyence VHX-5000 Confocal laser scanning microscope (CLSM) Keyence VK-X250	 Specifications Large area image stitching. Profiliometry and roughness measurements. Particle, volume, size measurements. No sample preparation required. Impact Quantify 3D surface morphology, surface roughness 	Tecnai TF30- FEG	Tomography, ASTAR/ TopSpin, PicoIndenter, Heating Stage. Impact • Quantify He bubble formation

IDAHO NATIONAL LABORATORY