LLNL Capabilities Relevant to the INFUSE Program

Presented at the INFUSE Workshop Knoxville, TN, November 23, 2019

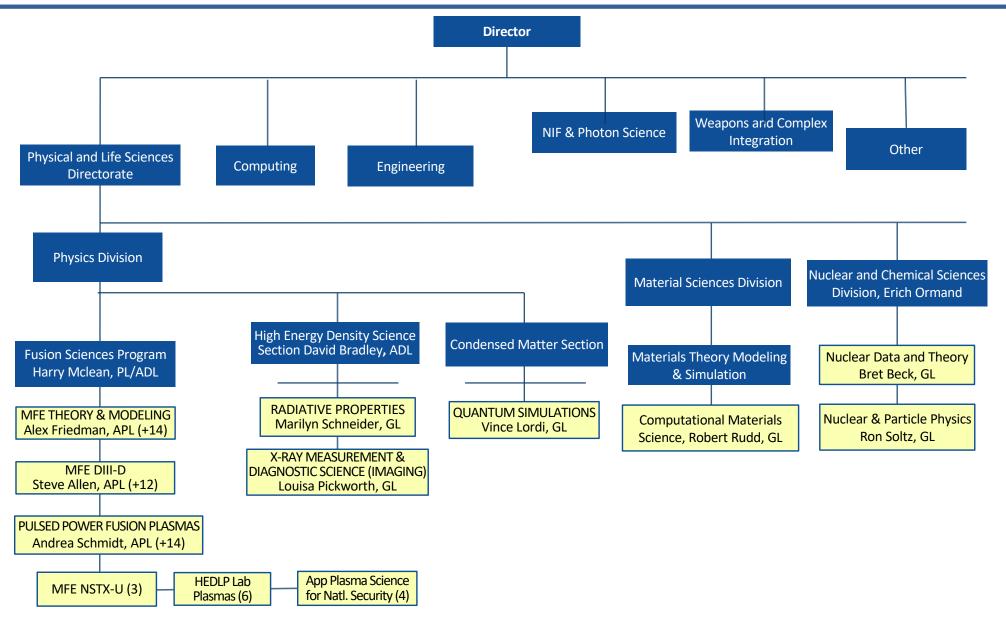
Andris Dimits

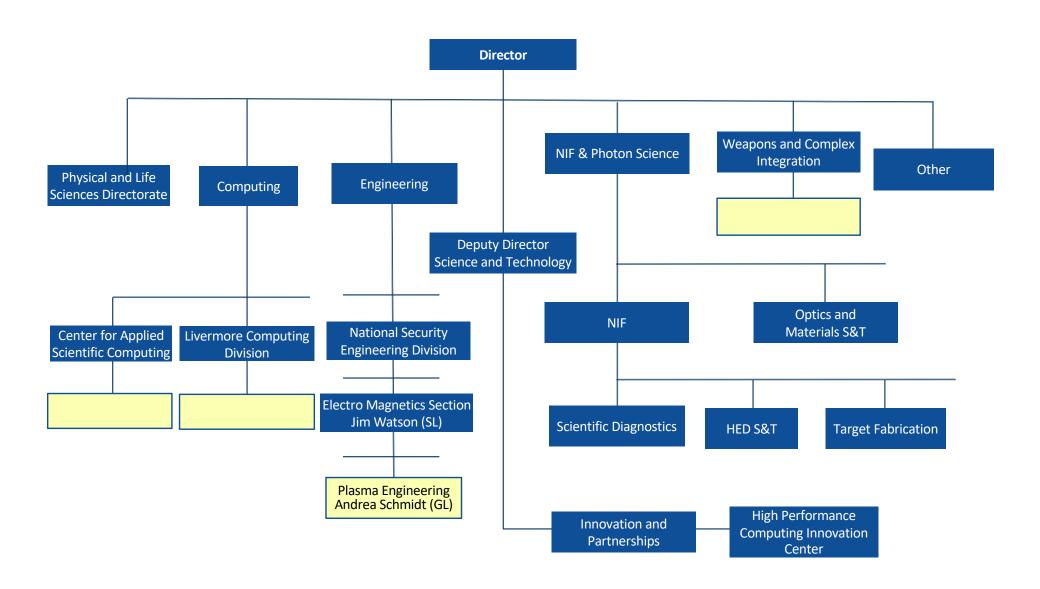
Lawrence Livermore National Laboratory

Email: dimits1@llnl.gov

Ph: 925-422-0211

Outline


- LLNL some background
- Organization of LLNL's fusion-related departments
- LLNL's technical expertise related to fusion
 - MFE
 - IFE
- Software
- Facilities of potential interest for collaboration
 - User facilities
 - Other facilities of potential interest
- Student intern and university faculty programs


LLNL – Some notable facts – (www.llnl.gov/about)

- Managed by Lawrence Livermore National Security, LLC for NNSA
- ~6,900 employees; ~2,700 scientists and engineers
- Established in 1952 on the grounds of the decommissioned Livermore Naval Air Station
- Prior to that, second site for UC Radiation Laboratory (Berkeley)
 - "Materials Testing Accelerator"
 - Development of diagnostics for nuclear weapons testing
- Early involvement in controlled fusion
 - Magnetic mirrors (R. F. Post experiments, 1952 MFTF-B, 1987)
 - Laser-based ICF
 - Nuckols 1960 proposed idea of controlled ICF based on computations
 - Shiva laser 1977
- Wide array of activities in controlled fusion (ICF, MFE), HED sciences, materials sciences and other areas relevant to fusion energy

LLNL departments relevant to fusion-energy: Physical and Life Sciences Directorate

LLNL: Other departments relevant to fusion-energy research

LLNL's technical MFE expertise: Physical and Life Sciences, Fusion Sciences Program

- Edge and scrape-off-layer modeling and theory
- Involvement in SciDAC's modeling/code-development
 - RF-turbulence interactions
 - Disruptions
 - Plasma-surface interactions
 - ATOM (Whole-device modeling)
- Other projects/skills
 - Finite-element methods for MFE stability and transport
 - Quantum computing
 - Machine learning

LLNL's technical MFE expertise: Physical and Life Sciences, Fusion Sciences Program

- Scrape-off layer experiments: Optical spectroscopy, imaging and analysis (DIII-D and NSTX groups), divertor Thomson scattering
- X-Ray measurement and imaging various groups
- Residual knowledge/experience base on magnetic mirrors
- Pulsed Power Fusion Plasmas group experiment & modeling
 - Dense plasma focus
 - Flow-stabilized z-pinch

LLNL has additional world-class technical expertise and facilities relevant to fusion energy

- Laser based ICF and HED science
 - NIF
 - Jupiter Laser Facility
- https://lasers.llnl.gov/about/nif-partners
- Residual knowledge/experience base
 - Heavy ion beam fusion
 - Fast Ignition
 - Fusion technology
- Diagnostics and imaging
 - X-ray measurements, signals, spectroscopy, imaging
 - Time-resolved neutron measurements

Software - PLS/FSP

- UEDGE T. Rognlien, M. Umansky
 - MFE fluid edge/scrape-off layer transport code
 - Fast, robust, capable; results generally supported by kinetic-neutrals models
- COGENT M. Dorf
 - Eulerian kinetic edge transport and turbulence code based on Chombo
- BOUT++ X. Q. Xu
 - Fluid edge transport and turbulence library/framework and codes
- Gingred M. Umansky
 - Grid generator for UEDGE, BOUT++
 - Capable of setting up novel null-point (e.g., snowflake) and divertor geometries
- SciDAC codes: RF Actuators (RF-turbulence interaction, A. Dimits), PSI (I. Joseph), TDS (disruptions, I. Joseph), AToM (transport J. Parker)
- Warp, Warp-X HIF/accelerator PIC codes (A. Friedman, D. Grote)
- Expertise with LSP PIC/hybrid code (esp. in Pulsed Power group A. Schmidt, A. Link, others)

Software – Other groups

CASC

- MFEM (Modular Finite Element Methods Library https://mfem.org/ T.
 Kolev); high-order, flexible, scalable; used by
 - RF SciDAC for RF propagation as scalable upgrade from COMSOL
 - TDS SciDAC (at LANL) and LLNL LDRD f- or new MHD code
 - RF SciDAC and LLNL LDRD for new plasma transport code
- Leading edge solver and preconditioner libraries Sundials (C. Woodward),
 HYPRE (R. Falgout); both are widely used
- Expertise with Chombo for plasma applications in CASC, FSP....
 (J. Hittinger, D. Ghosh, M. Dorr, M. Dorf)
- Other codes and expertise e.g., in NIF organization & others
 - World class ICF codes

Facilities potentially available for private use

- Physics Division
 - User facilities https://pls.llnl.gov/resources/user-facilities
 - CAMS Center for Accelerator Mass Spectrometry
 - Jupiter Laser Facility Three laser platforms Titan, Janus, Comet
 - Other facilities/equipment may be available via collaborations, e.g., CRADAs
- Engineering https://engineering.llnl.gov/collaboration
 - User facilities
 - Non-Destructive Characterization Laboratory (NDCL)
 - Design Optimization Laboratory (DOL)
 - Advanced Manufacturing Laboratory (AML)
 - Other via collaborations, e.g., CRADAs
- Livermore Computing https://hpc.llnl.gov
 - Computer time/access may be available to LLNL researchers and collaborators
- See also Industrial Partnerships Office site https://ipo.llnl.gov

Student intern programs and on-going university faculty programs

- https://pls.llnl.gov/careers/internship-programs
- http://scholars-llnl.ttcportals.com/pages/additional
- Science Undergraduate Laboratory Internships (SULI) for college and university students (4 year schools)
- A variety of summer internship programs https://pls.llnl.gov/careers/internship-programs
- Community College Internships (CCI) community college students (2 year schools)
- Visiting Faculty Program (VFP) for faculty and students from institutions historically underrepresented
- Graduate scholar program (PhD students)

Other facilities

- Livermore Computing https://hpc.llnl.gov/about
 - State-of-the-art computing facilities available to LLNL researchers and collaborators
- Livermore Valley Open Campus (LVOC) https://lvoc-org.llnl.gov/vision.html
 - High Performance Computing Innovation Center (HPCIC)
 - Meeting/collaboration space

Summary

- LLNL has technical expertise in a variety of areas relevant to controlled fusion
- Particular MFE focus and expertise is on edge and scrape off-layer physics (DIII-D, NSTX-U, other existing & future experiments, theory, modeling.)
- Leading laboratory on laser-based ICF
- LLNL has world-class expertise in and resources for a wide array of relevant areas
 - Applied and computational math
 - Pulsed-power plasma science and technology
 - Diagnostics
 - Materials sciences
 - Innovative new technologies, e.g., quantum computing, machine learning
- Active student intern and university faculty programs
- Robust business organization to facilitate industrial partnerships